-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathtrilqr.jl
432 lines (364 loc) · 18.3 KB
/
trilqr.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# An implementation of TRILQR for the solution of square or
# rectangular consistent linear adjoint systems Ax = b and Aᴴy = c.
#
# This method is described in
#
# A. Montoison and D. Orban
# BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property.
# SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
#
# Alexis Montoison, <[email protected]>
# Montreal, July 2019.
export trilqr, trilqr!
"""
(x, y, stats) = trilqr(A, b::AbstractVector{FC}, c::AbstractVector{FC};
atol::T=√eps(T), rtol::T=√eps(T), transfer_to_usymcg::Bool=true,
itmax::Int=0, verbose::Int=0, history::Bool=false,
callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, y, stats) = trilqr(A, b, c, x0::AbstractVector, y0::AbstractVector; kwargs...)
TriLQR can be warm-started from initial guesses `x0` and `y0` where `kwargs` are the same keyword arguments as above.
Combine USYMLQ and USYMQR to solve adjoint systems.
[0 A] [y] = [b]
[Aᴴ 0] [x] [c]
USYMLQ is used for solving primal system `Ax = b` of size m × n.
USYMQR is used for solving dual system `Aᴴy = c` of size n × m.
An option gives the possibility of transferring from the USYMLQ point to the
USYMCG point, when it exists. The transfer is based on the residual norm.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a matrix of dimension m × n;
* `b`: a vector of length m;
* `c`: a vector of length n.
#### Optional arguments
* `x0`: a vector of length n that represents an initial guess of the solution x;
* `y0`: a vector of length m that represents an initial guess of the solution y.
#### Output arguments
* `x`: a dense vector of length n;
* `y`: a dense vector of length m;
* `stats`: statistics collected on the run in an [`AdjointStats`](@ref) structure.
#### Reference
* A. Montoison and D. Orban, [*BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property*](https://doi.org/10.1137/19M1290991), SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
"""
function trilqr end
function trilqr(A, b :: AbstractVector{FC}, c :: AbstractVector{FC}, x0 :: AbstractVector, y0 :: AbstractVector; kwargs...) where FC <: FloatOrComplex
solver = TrilqrSolver(A, b)
trilqr!(solver, A, b, c, x0, y0; kwargs...)
return (solver.x, solver.y, solver.stats)
end
function trilqr(A, b :: AbstractVector{FC}, c :: AbstractVector{FC}; kwargs...) where FC <: FloatOrComplex
solver = TrilqrSolver(A, b)
trilqr!(solver, A, b, c; kwargs...)
return (solver.x, solver.y, solver.stats)
end
"""
solver = trilqr!(solver::TrilqrSolver, A, b, c; kwargs...)
solver = trilqr!(solver::TrilqrSolver, A, b, c, x0, y0; kwargs...)
where `kwargs` are keyword arguments of [`trilqr`](@ref).
See [`TrilqrSolver`](@ref) for more details about the `solver`.
"""
function trilqr! end
function trilqr!(solver :: TrilqrSolver{T,FC,S}, A, b :: AbstractVector{FC}, c :: AbstractVector{FC},
x0 :: AbstractVector, y0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0, y0)
trilqr!(solver, A, b, c; kwargs...)
return solver
end
function trilqr!(solver :: TrilqrSolver{T,FC,S}, A, b :: AbstractVector{FC}, c :: AbstractVector{FC};
atol :: T=√eps(T), rtol :: T=√eps(T), transfer_to_usymcg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false,
callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
length(b) == m || error("Inconsistent problem size")
length(c) == n || error("Inconsistent problem size")
(verbose > 0) && @printf("TRILQR: primal system of %d equations in %d variables\n", m, n)
(verbose > 0) && @printf("TRILQR: dual system of %d equations in %d variables\n", n, m)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
ktypeof(c) <: S || error("ktypeof(c) is not a subtype of $S")
# Compute the adjoint of A
Aᴴ = A'
# Set up workspace.
uₖ₋₁, uₖ, p, d̅, x, stats = solver.uₖ₋₁, solver.uₖ, solver.p, solver.d̅, solver.x, solver.stats
vₖ₋₁, vₖ, q, t, wₖ₋₃, wₖ₋₂ = solver.vₖ₋₁, solver.vₖ, solver.q, solver.y, solver.wₖ₋₃, solver.wₖ₋₂
Δx, Δy, warm_start = solver.Δx, solver.Δy, solver.warm_start
rNorms, sNorms = stats.residuals_primal, stats.residuals_dual
reset!(stats)
r₀ = warm_start ? q : b
s₀ = warm_start ? p : c
if warm_start
mul!(r₀, A, Δx)
@kaxpby!(n, one(FC), b, -one(FC), r₀)
mul!(s₀, Aᴴ, Δy)
@kaxpby!(n, one(FC), c, -one(FC), s₀)
end
# Initial solution x₀ and residual r₀ = b - Ax₀.
x .= zero(FC) # x₀
bNorm = @knrm2(m, r₀) # rNorm = ‖r₀‖
# Initial solution y₀ and residual s₀ = c - Aᴴy₀.
t .= zero(FC) # t₀
cNorm = @knrm2(n, s₀) # sNorm = ‖s₀‖
iter = 0
itmax == 0 && (itmax = m+n)
history && push!(rNorms, bNorm)
history && push!(sNorms, cNorm)
εL = atol + rtol * bNorm
εQ = atol + rtol * cNorm
ξ = zero(T)
(verbose > 0) && @printf("%5s %7s %7s\n", "k", "‖rₖ‖", "‖sₖ‖")
kdisplay(iter, verbose) && @printf("%5d %7.1e %7.1e\n", iter, bNorm, cNorm)
# Set up workspace.
βₖ = @knrm2(m, r₀) # β₁ = ‖r₀‖ = ‖v₁‖
γₖ = @knrm2(n, s₀) # γ₁ = ‖s₀‖ = ‖u₁‖
vₖ₋₁ .= zero(FC) # v₀ = 0
uₖ₋₁ .= zero(FC) # u₀ = 0
vₖ .= r₀ ./ βₖ # v₁ = (b - Ax₀) / β₁
uₖ .= s₀ ./ γₖ # u₁ = (c - Aᴴy₀) / γ₁
cₖ₋₁ = cₖ = -one(T) # Givens cosines used for the LQ factorization of Tₖ
sₖ₋₁ = sₖ = zero(FC) # Givens sines used for the LQ factorization of Tₖ
d̅ .= zero(FC) # Last column of D̅ₖ = Uₖ(Qₖ)ᴴ
ζₖ₋₁ = ζbarₖ = zero(FC) # ζₖ₋₁ and ζbarₖ are the last components of z̅ₖ = (L̅ₖ)⁻¹β₁e₁
ζₖ₋₂ = ηₖ = zero(FC) # ζₖ₋₂ and ηₖ are used to update ζₖ₋₁ and ζbarₖ
δbarₖ₋₁ = δbarₖ = zero(FC) # Coefficients of Lₖ₋₁ and L̅ₖ modified over the course of two iterations
ψbarₖ₋₁ = ψₖ₋₁ = zero(FC) # ψₖ₋₁ and ψbarₖ are the last components of h̅ₖ = Qₖγ₁e₁
ϵₖ₋₃ = λₖ₋₂ = zero(FC) # Components of Lₖ₋₁
wₖ₋₃ .= zero(FC) # Column k-3 of Wₖ = Vₖ(Lₖ)⁻ᴴ
wₖ₋₂ .= zero(FC) # Column k-2 of Wₖ = Vₖ(Lₖ)⁻ᴴ
# Stopping criterion.
inconsistent = false
solved_lq = bNorm == 0
solved_lq_tol = solved_lq_mach = false
solved_cg = solved_cg_tol = solved_cg_mach = false
solved_primal = solved_lq || solved_cg
solved_qr_tol = solved_qr_mach = false
solved_dual = cNorm == 0
tired = iter ≥ itmax
status = "unknown"
user_requested_exit = false
while !((solved_primal && solved_dual) || tired || user_requested_exit)
# Update iteration index.
iter = iter + 1
# Continue the SSY tridiagonalization process.
# AUₖ = VₖTₖ + βₖ₊₁vₖ₊₁(eₖ)ᵀ = Vₖ₊₁Tₖ₊₁.ₖ
# AᴴVₖ = Uₖ(Tₖ)ᴴ + γₖ₊₁uₖ₊₁(eₖ)ᵀ = Uₖ₊₁(Tₖ.ₖ₊₁)ᴴ
mul!(q, A , uₖ) # Forms vₖ₊₁ : q ← Auₖ
mul!(p, Aᴴ, vₖ) # Forms uₖ₊₁ : p ← Aᴴvₖ
@kaxpy!(m, -γₖ, vₖ₋₁, q) # q ← q - γₖ * vₖ₋₁
@kaxpy!(n, -βₖ, uₖ₋₁, p) # p ← p - βₖ * uₖ₋₁
αₖ = @kdot(m, vₖ, q) # αₖ = ⟨vₖ,q⟩
@kaxpy!(m, - αₖ , vₖ, q) # q ← q - αₖ * vₖ
@kaxpy!(n, -conj(αₖ), uₖ, p) # p ← p - ᾱₖ * uₖ
βₖ₊₁ = @knrm2(m, q) # βₖ₊₁ = ‖q‖
γₖ₊₁ = @knrm2(n, p) # γₖ₊₁ = ‖p‖
# Update the LQ factorization of Tₖ = L̅ₖQₖ.
# [ α₁ γ₂ 0 • • • 0 ] [ δ₁ 0 • • • • 0 ]
# [ β₂ α₂ γ₃ • • ] [ λ₁ δ₂ • • ]
# [ 0 • • • • • ] [ ϵ₁ λ₂ δ₃ • • ]
# [ • • • • • • • ] = [ 0 • • • • • ] Qₖ
# [ • • • • • 0 ] [ • • • • • • • ]
# [ • • • • γₖ] [ • • • λₖ₋₂ δₖ₋₁ 0 ]
# [ 0 • • • 0 βₖ αₖ] [ • • • 0 ϵₖ₋₂ λₖ₋₁ δbarₖ]
if iter == 1
δbarₖ = αₖ
elseif iter == 2
# [δbar₁ γ₂] [c₂ s̄₂] = [δ₁ 0 ]
# [ β₂ α₂] [s₂ -c₂] [λ₁ δbar₂]
(cₖ, sₖ, δₖ₋₁) = sym_givens(δbarₖ₋₁, γₖ)
λₖ₋₁ = cₖ * βₖ + sₖ * αₖ
δbarₖ = conj(sₖ) * βₖ - cₖ * αₖ
else
# [0 βₖ αₖ] [cₖ₋₁ s̄ₖ₋₁ 0] = [sₖ₋₁βₖ -cₖ₋₁βₖ αₖ]
# [sₖ₋₁ -cₖ₋₁ 0]
# [ 0 0 1]
#
# [ λₖ₋₂ δbarₖ₋₁ γₖ] [1 0 0 ] = [λₖ₋₂ δₖ₋₁ 0 ]
# [sₖ₋₁βₖ -cₖ₋₁βₖ αₖ] [0 cₖ s̄ₖ] [ϵₖ₋₂ λₖ₋₁ δbarₖ]
# [0 sₖ -cₖ]
(cₖ, sₖ, δₖ₋₁) = sym_givens(δbarₖ₋₁, γₖ)
ϵₖ₋₂ = sₖ₋₁ * βₖ
λₖ₋₁ = -cₖ₋₁ * cₖ * βₖ + sₖ * αₖ
δbarₖ = -cₖ₋₁ * conj(sₖ) * βₖ - cₖ * αₖ
end
if !solved_primal
# Compute ζₖ₋₁ and ζbarₖ, last components of the solution of L̅ₖz̅ₖ = β₁e₁
# [δbar₁] [ζbar₁] = [β₁]
if iter == 1
ηₖ = βₖ
end
# [δ₁ 0 ] [ ζ₁ ] = [β₁]
# [λ₁ δbar₂] [ζbar₂] [0 ]
if iter == 2
ηₖ₋₁ = ηₖ
ζₖ₋₁ = ηₖ₋₁ / δₖ₋₁
ηₖ = -λₖ₋₁ * ζₖ₋₁
end
# [λₖ₋₂ δₖ₋₁ 0 ] [ζₖ₋₂ ] = [0]
# [ϵₖ₋₂ λₖ₋₁ δbarₖ] [ζₖ₋₁ ] [0]
# [ζbarₖ]
if iter ≥ 3
ζₖ₋₂ = ζₖ₋₁
ηₖ₋₁ = ηₖ
ζₖ₋₁ = ηₖ₋₁ / δₖ₋₁
ηₖ = -ϵₖ₋₂ * ζₖ₋₂ - λₖ₋₁ * ζₖ₋₁
end
# Relations for the directions dₖ₋₁ and d̅ₖ, the last two columns of D̅ₖ = Uₖ(Qₖ)ᴴ.
# [d̅ₖ₋₁ uₖ] [cₖ s̄ₖ] = [dₖ₋₁ d̅ₖ] ⟷ dₖ₋₁ = cₖ * d̅ₖ₋₁ + sₖ * uₖ
# [sₖ -cₖ] ⟷ d̅ₖ = s̄ₖ * d̅ₖ₋₁ - cₖ * uₖ
if iter ≥ 2
# Compute solution xₖ.
# (xᴸ)ₖ ← (xᴸ)ₖ₋₁ + ζₖ₋₁ * dₖ₋₁
@kaxpy!(n, ζₖ₋₁ * cₖ, d̅, x)
@kaxpy!(n, ζₖ₋₁ * sₖ, uₖ, x)
end
# Compute d̅ₖ.
if iter == 1
# d̅₁ = u₁
@. d̅ = uₖ
else
# d̅ₖ = s̄ₖ * d̅ₖ₋₁ - cₖ * uₖ
@kaxpby!(n, -cₖ, uₖ, conj(sₖ), d̅)
end
# Compute USYMLQ residual norm
# ‖rₖ‖ = √(|μₖ|² + |ωₖ|²)
if iter == 1
rNorm_lq = bNorm
else
μₖ = βₖ * (sₖ₋₁ * ζₖ₋₂ - cₖ₋₁ * cₖ * ζₖ₋₁) + αₖ * sₖ * ζₖ₋₁
ωₖ = βₖ₊₁ * sₖ * ζₖ₋₁
rNorm_lq = sqrt(abs2(μₖ) + abs2(ωₖ))
end
history && push!(rNorms, rNorm_lq)
# Compute USYMCG residual norm
# ‖rₖ‖ = |ρₖ|
if transfer_to_usymcg && (abs(δbarₖ) > eps(T))
ζbarₖ = ηₖ / δbarₖ
ρₖ = βₖ₊₁ * (sₖ * ζₖ₋₁ - cₖ * ζbarₖ)
rNorm_cg = abs(ρₖ)
end
# Update primal stopping criterion
solved_lq_tol = rNorm_lq ≤ εL
solved_lq_mach = rNorm_lq + 1 ≤ 1
solved_lq = solved_lq_tol || solved_lq_mach
solved_cg_tol = transfer_to_usymcg && (abs(δbarₖ) > eps(T)) && (rNorm_cg ≤ εL)
solved_cg_mach = transfer_to_usymcg && (abs(δbarₖ) > eps(T)) && (rNorm_cg + 1 ≤ 1)
solved_cg = solved_cg_tol || solved_cg_mach
solved_primal = solved_lq || solved_cg
end
if !solved_dual
# Compute ψₖ₋₁ and ψbarₖ the last coefficients of h̅ₖ = Qₖγ₁e₁.
if iter == 1
ψbarₖ = γₖ
else
# [cₖ s̄ₖ] [ψbarₖ₋₁] = [ ψₖ₋₁ ]
# [sₖ -cₖ] [ 0 ] [ ψbarₖ]
ψₖ₋₁ = cₖ * ψbarₖ₋₁
ψbarₖ = sₖ * ψbarₖ₋₁
end
# Compute the direction wₖ₋₁, the last column of Wₖ₋₁ = (Vₖ₋₁)(Lₖ₋₁)⁻ᴴ ⟷ (L̄ₖ₋₁)(Wₖ₋₁)ᵀ = (Vₖ₋₁)ᵀ.
# w₁ = v₁ / δ̄₁
if iter == 2
wₖ₋₁ = wₖ₋₂
@kaxpy!(m, one(FC), vₖ₋₁, wₖ₋₁)
@. wₖ₋₁ = vₖ₋₁ / conj(δₖ₋₁)
end
# w₂ = (v₂ - λ̄₁w₁) / δ̄₂
if iter == 3
wₖ₋₁ = wₖ₋₃
@kaxpy!(m, one(FC), vₖ₋₁, wₖ₋₁)
@kaxpy!(m, -conj(λₖ₋₂), wₖ₋₂, wₖ₋₁)
@. wₖ₋₁ = wₖ₋₁ / conj(δₖ₋₁)
end
# wₖ₋₁ = (vₖ₋₁ - λ̄ₖ₋₂wₖ₋₂ - ϵ̄ₖ₋₃wₖ₋₃) / δ̄ₖ₋₁
if iter ≥ 4
@kscal!(m, -conj(ϵₖ₋₃), wₖ₋₃)
wₖ₋₁ = wₖ₋₃
@kaxpy!(m, one(FC), vₖ₋₁, wₖ₋₁)
@kaxpy!(m, -conj(λₖ₋₂), wₖ₋₂, wₖ₋₁)
@. wₖ₋₁ = wₖ₋₁ / conj(δₖ₋₁)
end
if iter ≥ 3
# Swap pointers.
@kswap(wₖ₋₃, wₖ₋₂)
end
if iter ≥ 2
# Compute solution tₖ₋₁.
# tₖ₋₁ ← tₖ₋₂ + ψₖ₋₁ * wₖ₋₁
@kaxpy!(m, ψₖ₋₁, wₖ₋₁, t)
end
# Update ψbarₖ₋₁
ψbarₖ₋₁ = ψbarₖ
# Compute USYMQR residual norm ‖sₖ₋₁‖ = |ψbarₖ|.
sNorm = abs(ψbarₖ)
history && push!(sNorms, sNorm)
# Compute ‖Asₖ₋₁‖ = |ψbarₖ| * √(|δbarₖ|² + |λbarₖ|²).
AsNorm = abs(ψbarₖ) * √(abs2(δbarₖ) + abs2(cₖ * βₖ₊₁))
# Update dual stopping criterion
iter == 1 && (ξ = atol + rtol * AsNorm)
solved_qr_tol = sNorm ≤ εQ
solved_qr_mach = sNorm + 1 ≤ 1
inconsistent = AsNorm ≤ ξ
solved_dual = solved_qr_tol || solved_qr_mach || inconsistent
end
# Compute uₖ₊₁ and uₖ₊₁.
@. vₖ₋₁ = vₖ # vₖ₋₁ ← vₖ
@. uₖ₋₁ = uₖ # uₖ₋₁ ← uₖ
if βₖ₊₁ ≠ zero(T)
@. vₖ = q / βₖ₊₁ # βₖ₊₁vₖ₊₁ = q
end
if γₖ₊₁ ≠ zero(T)
@. uₖ = p / γₖ₊₁ # γₖ₊₁uₖ₊₁ = p
end
# Update ϵₖ₋₃, λₖ₋₂, δbarₖ₋₁, cₖ₋₁, sₖ₋₁, γₖ and βₖ.
if iter ≥ 3
ϵₖ₋₃ = ϵₖ₋₂
end
if iter ≥ 2
λₖ₋₂ = λₖ₋₁
end
δbarₖ₋₁ = δbarₖ
cₖ₋₁ = cₖ
sₖ₋₁ = sₖ
γₖ = γₖ₊₁
βₖ = βₖ₊₁
user_requested_exit = callback(solver) :: Bool
tired = iter ≥ itmax
kdisplay(iter, verbose) && solved_primal && !solved_dual && @printf("%5d %7s %7.1e\n", iter, "", sNorm)
kdisplay(iter, verbose) && !solved_primal && solved_dual && @printf("%5d %7.1e %7s\n", iter, rNorm_lq, "")
kdisplay(iter, verbose) && !solved_primal && !solved_dual && @printf("%5d %7.1e %7.1e\n", iter, rNorm_lq, sNorm)
end
(verbose > 0) && @printf("\n")
# Compute USYMCG point
# (xᶜ)ₖ ← (xᴸ)ₖ₋₁ + ζbarₖ * d̅ₖ
if solved_cg
@kaxpy!(n, ζbarₖ, d̅, x)
end
tired && (status = "maximum number of iterations exceeded")
solved_lq_tol && !solved_dual && (status = "Only the primal solution xᴸ is good enough given atol and rtol")
solved_cg_tol && !solved_dual && (status = "Only the primal solution xᶜ is good enough given atol and rtol")
!solved_primal && solved_qr_tol && (status = "Only the dual solution t is good enough given atol and rtol")
solved_lq_tol && solved_qr_tol && (status = "Both primal and dual solutions (xᴸ, t) are good enough given atol and rtol")
solved_cg_tol && solved_qr_tol && (status = "Both primal and dual solutions (xᶜ, t) are good enough given atol and rtol")
solved_lq_mach && !solved_dual && (status = "Only found approximate zero-residual primal solution xᴸ")
solved_cg_mach && !solved_dual && (status = "Only found approximate zero-residual primal solution xᶜ")
!solved_primal && solved_qr_mach && (status = "Only found approximate zero-residual dual solution t")
solved_lq_mach && solved_qr_mach && (status = "Found approximate zero-residual primal and dual solutions (xᴸ, t)")
solved_cg_mach && solved_qr_mach && (status = "Found approximate zero-residual primal and dual solutions (xᶜ, t)")
solved_lq_mach && solved_qr_tol && (status = "Found approximate zero-residual primal solutions xᴸ and a dual solution t good enough given atol and rtol")
solved_cg_mach && solved_qr_tol && (status = "Found approximate zero-residual primal solutions xᶜ and a dual solution t good enough given atol and rtol")
solved_lq_tol && solved_qr_mach && (status = "Found a primal solution xᴸ good enough given atol and rtol and an approximate zero-residual dual solutions t")
solved_cg_tol && solved_qr_mach && (status = "Found a primal solution xᶜ good enough given atol and rtol and an approximate zero-residual dual solutions t")
user_requested_exit && (status = "user-requested exit")
# Update x and y
warm_start && @kaxpy!(n, one(FC), Δx, x)
warm_start && @kaxpy!(m, one(FC), Δy, t)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.status = status
stats.solved_primal = solved_primal
stats.solved_dual = solved_dual
return solver
end