-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathsymmlq.jl
414 lines (334 loc) · 12.2 KB
/
symmlq.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
# An implementation of SYMMLQ for the solution of the
# linear system Ax = b, where A is Hermitian.
#
# This implementation follows the original implementation by
# Michael Saunders described in
#
# C. C. Paige and M. A. Saunders, Solution of Sparse Indefinite Systems of Linear Equations,
# SIAM Journal on Numerical Analysis, 12(4), pp. 617--629, 1975.
#
# Ron Estrin, <[email protected]>
export symmlq, symmlq!
"""
(x, stats) = symmlq(A, b::AbstractVector{FC};
window::Int=0, M=I, λ::T=zero(T), transfer_to_cg::Bool=true,
λest::T=zero(T), atol::T=√eps(T), rtol::T=√eps(T),
etol::T=√eps(T), itmax::Int=0, conlim::T=1/√eps(T),
verbose::Int=0, history::Bool=false,
ldiv::Bool=false, callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, stats) = symmlq(A, b, x0::AbstractVector; kwargs...)
SYMMLQ can be warm-started from an initial guess `x0` where `kwargs` are the same keyword arguments as above
Solve the shifted linear system
(A + λI) x = b
of size n using the SYMMLQ method, where λ is a shift parameter,
and A is Hermitian.
SYMMLQ produces monotonic errors ‖x* - x‖₂.
A preconditioner M may be provided in the form of a linear operator and is
assumed to be Hermitian and positive definite.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a Hermitian matrix of dimension n;
* `b`: a vector of length n.
#### Optional argument
* `x0`: a vector of length n that represents an initial guess of the solution x.
#### Output arguments
* `x`: a dense vector of length n;
* `stats`: statistics collected on the run in a [`SymmlqStats`](@ref) structure.
#### Reference
* C. C. Paige and M. A. Saunders, [*Solution of Sparse Indefinite Systems of Linear Equations*](https://doi.org/10.1137/0712047), SIAM Journal on Numerical Analysis, 12(4), pp. 617--629, 1975.
"""
function symmlq end
function symmlq(A, b :: AbstractVector{FC}, x0 :: AbstractVector; window :: Int=5, kwargs...) where FC <: FloatOrComplex
solver = SymmlqSolver(A, b, window=window)
symmlq!(solver, A, b, x0; kwargs...)
return (solver.x, solver.stats)
end
function symmlq(A, b :: AbstractVector{FC}; window :: Int=5, kwargs...) where FC <: FloatOrComplex
solver = SymmlqSolver(A, b, window=window)
symmlq!(solver, A, b; kwargs...)
return (solver.x, solver.stats)
end
"""
solver = symmlq!(solver::SymmlqSolver, A, b; kwargs...)
solver = symmlq!(solver::SymmlqSolver, A, b, x0; kwargs...)
where `kwargs` are keyword arguments of [`symmlq`](@ref).
See [`SymmlqSolver`](@ref) for more details about the `solver`.
"""
function symmlq! end
function symmlq!(solver :: SymmlqSolver{T,FC,S}, A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0)
symmlq!(solver, A, b; kwargs...)
return solver
end
function symmlq!(solver :: SymmlqSolver{T,FC,S}, A, b :: AbstractVector{FC};
M=I, λ :: T=zero(T), transfer_to_cg :: Bool=true,
λest :: T=zero(T), atol :: T=√eps(T), rtol :: T=√eps(T),
etol :: T=√eps(T), itmax :: Int=0, conlim :: T=1/√eps(T),
verbose :: Int=0, history :: Bool=false,
ldiv :: Bool=false, callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
m == n || error("System must be square")
length(b) == m || error("Inconsistent problem size")
(verbose > 0) && @printf("SYMMLQ: system of size %d\n", n)
# Tests M = Iₙ
MisI = (M === I)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
# Set up workspace.
allocate_if(!MisI, solver, :v, S, n)
x, Mvold, Mv, Mv_next, w̅ = solver.x, solver.Mvold, solver.Mv, solver.Mv_next, solver.w̅
Δx, clist, zlist, sprod, stats = solver.Δx, solver.clist, solver.zlist, solver.sprod, solver.stats
warm_start = solver.warm_start
rNorms, rcgNorms = stats.residuals, stats.residualscg
errors, errorscg = stats.errors, stats.errorscg
reset!(stats)
v = MisI ? Mv : solver.v
vold = MisI ? Mvold : solver.v
ϵM = eps(T)
ctol = conlim > 0 ? 1 / conlim : zero(T)
# Initial solution x₀
x .= zero(FC)
if warm_start
mul!(Mvold, A, Δx)
(λ ≠ 0) && @kaxpy!(n, λ, Δx, Mvold)
@kaxpby!(n, one(FC), b, -one(FC), Mvold)
else
Mvold .= b
end
# Initialize Lanczos process.
# β₁ M v₁ = b.
MisI || mulorldiv!(vold, M, Mvold, ldiv)
β₁ = @kdotr(m, vold, Mvold)
if β₁ == 0
stats.niter = 0
stats.solved = true
stats.Anorm = T(NaN)
stats.Acond = T(NaN)
history && push!(rNorms, zero(T))
history && push!(rcgNorms, zero(T))
stats.status = "x = 0 is a zero-residual solution"
solver.warm_start = false
return solver
end
β₁ = sqrt(β₁)
β = β₁
@kscal!(m, one(FC) / β, vold)
MisI || @kscal!(m, one(FC) / β, Mvold)
w̅ .= vold
mul!(Mv, A, vold)
α = @kdotr(m, vold, Mv) + λ
@kaxpy!(m, -α, Mvold, Mv) # Mv = Mv - α * Mvold
MisI || mulorldiv!(v, M, Mv, ldiv)
β = @kdotr(m, v, Mv)
β < 0 && error("Preconditioner is not positive definite")
β = sqrt(β)
@kscal!(m, one(FC) / β, v)
MisI || @kscal!(m, one(FC) / β, Mv)
# Start QR factorization
γbar = α
δbar = β
ϵold = zero(T)
cold = one(T)
sold = zero(T)
ηold = zero(T)
η = β₁
ζold = zero(T)
ANorm² = α * α + β * β
γmax = T(-Inf)
γmin = T(Inf)
ANorm = zero(T)
Acond = zero(T)
xNorm = zero(T)
rNorm = β₁
history && push!(rNorms, rNorm)
if γbar ≠ 0
ζbar = η / γbar
xcgNorm = abs(ζbar)
rcgNorm = β₁ * abs(ζbar)
history && push!(rcgNorms, rcgNorm)
else
history && push!(rcgNorms, missing)
end
err = T(Inf)
errcg = T(Inf)
window = length(clist)
clist .= zero(T)
zlist .= zero(T)
sprod .= one(T)
if λest ≠ 0
# Start QR factorization of Tₖ - λest I
ρbar = α - λest
σbar = β
ρ = sqrt(ρbar * ρbar + β * β)
cwold = -one(T)
cw = ρbar / ρ
sw = β / ρ
history && push!(errors, abs(β₁/λest))
if γbar ≠ 0
history && push!(errorscg, sqrt(errors[1]^2 - ζbar^2))
else
history && push!(errorscg, missing)
end
end
iter = 0
itmax == 0 && (itmax = 2 * n)
(verbose > 0) && @printf("%5s %7s %7s %8s %8s %7s %7s %7s\n", "k", "‖r‖", "β", "cos", "sin", "‖A‖", "κ(A)", "test1")
kdisplay(iter, verbose) && @printf("%5d %7.1e %7.1e %8.1e %8.1e %7.1e %7.1e\n", iter, rNorm, β, cold, sold, ANorm, Acond)
tol = atol + rtol * β₁
status = "unknown"
solved_lq = solved_mach = solved_lim = (rNorm ≤ tol)
solved_cg = (γbar ≠ 0) && transfer_to_cg && rcgNorm ≤ tol
tired = iter ≥ itmax
ill_cond = ill_cond_mach = ill_cond_lim = false
solved = zero_resid = solved_lq || solved_cg
fwd_err = false
user_requested_exit = false
while ! (solved || tired || ill_cond || user_requested_exit)
iter = iter + 1
# Continue QR factorization
(c, s, γ) = sym_givens(γbar, β)
# Update SYMMLQ point
ηold = η
ζ = ηold / γ
@kaxpy!(n, c * ζ, w̅, x)
@kaxpy!(n, s * ζ, v, x)
# Update w̅
@kaxpby!(n, -c, v, s, w̅)
# Generate next Lanczos vector
oldβ = β
mul!(Mv_next, A, v)
α = @kdotr(m, v, Mv_next) + λ
@kaxpy!(m, -oldβ, Mvold, Mv_next)
@. Mvold = Mv
@kaxpy!(m, -α, Mv, Mv_next)
@. Mv = Mv_next
MisI || mulorldiv!(v, M, Mv, ldiv)
β = @kdotr(m, v, Mv)
β < 0 && error("Preconditioner is not positive definite")
β = sqrt(β)
@kscal!(m, one(FC) / β, v)
MisI || @kscal!(m, one(FC) / β, Mv)
# Continue A norm estimate
ANorm² = ANorm² + α * α + oldβ * oldβ + β * β
if λest ≠ 0
η = -oldβ * oldβ * cwold / ρbar
ω = λest + η
ψ = c * δbar + s * ω
ωbar = s * δbar - c * ω
end
# Continue QR factorization
δ = δbar * c + α * s
γbar = δbar * s - α * c
ϵ = β * s
δbar = -β * c
η = -ϵold * ζold - δ * ζ
rNorm = sqrt(γ * γ * ζ * ζ + ϵold * ϵold * ζold * ζold)
xNorm = xNorm + ζ * ζ
history && push!(rNorms, rNorm)
if γbar ≠ 0
ζbar = η / γbar
rcgNorm = β * abs(s * ζ - c * ζbar)
xcgNorm = xNorm + ζbar * ζbar
history && push!(rcgNorms, rcgNorm)
else
history && push!(rcgNorms, missing)
end
if window > 0 && λest ≠ 0
if iter < window && window > 1
for i = iter+1 : window
sprod[i] = s * sprod[i]
end
end
ix = ((iter-1) % window) + 1
clist[ix] = c
zlist[ix] = ζ
if iter ≥ window
jx = mod(iter, window) + 1
zetabark = zlist[jx] / clist[jx]
if γbar ≠ 0
theta = abs(sum(clist[i] * sprod[i] * zlist[i] for i = 1 : window))
theta = zetabark * theta + abs(zetabark * ζbar * sprod[ix] * s) - zetabark^2
history && (errorscg[iter-window+1] = sqrt(abs(errorscg[iter-window+1]^2 - 2*theta)))
else
history && (errorscg[iter-window+1] = missing)
end
end
ix = (iter % window) + 1
if iter ≥ window && window > 1
sprod .= sprod ./ sprod[(ix % window) + 1]
sprod[ix] = sprod[mod(ix-2, window)+1] * s
end
end
if λest ≠ 0
err = abs((ϵold * ζold + ψ * ζ) / ωbar)
history && push!(errors, err)
if γbar ≠ 0
errcg = sqrt(abs(err * err - ζbar * ζbar))
history && push!(errorscg, errcg)
else
history && push!(errorscg, missing)
end
ρbar = sw * σbar - cw * (α - λest)
σbar = -cw * β
ρ = sqrt(ρbar * ρbar + β * β)
cwold = cw
cw = ρbar / ρ
sw = β / ρ
end
# TODO: Use γ or γbar?
γmax = max(γmax, γ)
γmin = min(γmin, γ)
Acond = γmax / γmin
ANorm = sqrt(ANorm²)
test1 = rNorm / (ANorm * xNorm)
kdisplay(iter, verbose) && @printf("%5d %7.1e %7.1e %8.1e %8.1e %7.1e %7.1e %7.1e\n", iter, rNorm, β, c, s, ANorm, Acond, test1)
# Reset variables
ϵold = ϵ
ζold = ζ
cold = c
# Stopping conditions that do not depend on user input.
# This is to guard against tolerances that are unreasonably small.
resid_decrease_mach = (one(T) + rNorm ≤ one(T))
ill_cond_mach = (one(T) + one(T) / Acond ≤ one(T))
zero_resid_mach = (one(T) + test1 ≤ one(T))
# solved_mach = (ϵx ≥ β₁)
# Stopping conditions based on user-provided tolerances.
tired = iter ≥ itmax
ill_cond_lim = (one(T) / Acond ≤ ctol)
zero_resid_lim = (test1 ≤ tol)
fwd_err = (err ≤ etol) || ((γbar ≠ 0) && (errcg ≤ etol))
solved_lq = rNorm ≤ tol
solved_cg = transfer_to_cg && (γbar ≠ 0) && rcgNorm ≤ tol
user_requested_exit = callback(solver) :: Bool
zero_resid = solved_lq || solved_cg
ill_cond = ill_cond_mach || ill_cond_lim
solved = solved_mach || zero_resid || zero_resid_mach || zero_resid_lim || fwd_err || resid_decrease_mach
end
(verbose > 0) && @printf("\n")
# Compute CG point
# (xᶜ)ₖ ← (xᴸ)ₖ₋₁ + ζbarₖ * w̅ₖ
if solved_cg
@kaxpy!(m, ζbar, w̅, x)
end
tired && (status = "maximum number of iterations exceeded")
ill_cond_mach && (status = "condition number seems too large for this machine")
ill_cond_lim && (status = "condition number exceeds tolerance")
solved && (status = "found approximate solution")
solved_lq && (status = "solution xᴸ good enough given atol and rtol")
solved_cg && (status = "solution xᶜ good enough given atol and rtol")
user_requested_exit && (status = "user-requested exit")
# Update x
warm_start && @kaxpy!(n, one(FC), Δx, x)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.solved = solved
stats.Anorm = ANorm
stats.Acond = Acond
stats.status = status
return solver
end