-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathminres.jl
360 lines (292 loc) · 11.3 KB
/
minres.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# An implementation of MINRES for the solution of the
# linear system Ax = b, or the linear least-squares problem
#
# minimize ‖Ax - b‖₂
#
# where A is Hermitian.
#
# MINRES is formally equivalent to applying the conjugate residuals method
# to Ax = b when A is positive definite, but is more general and also applies
# to the case where A is indefinite.
#
# This implementation follows the original implementation by
# Michael Saunders described in
#
# C. C. Paige and M. A. Saunders, Solution of Sparse Indefinite Systems of Linear Equations,
# SIAM Journal on Numerical Analysis, 12(4), pp. 617--629, 1975.
#
# Dominique Orban, <[email protected]>
# Brussels, Belgium, June 2015.
# Montreal, August 2015.
export minres, minres!
"""
(x, stats) = minres(A, b::AbstractVector{FC};
M=I, λ::T=zero(T), atol::T=√eps(T)/100,
rtol::T=√eps(T)/100, ratol :: T=zero(T),
rrtol :: T=zero(T), etol::T=√eps(T),
window::Int=5, itmax::Int=0,
conlim::T=1/√eps(T), verbose::Int=0,
history::Bool=false, ldiv::Bool=false,
callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, stats) = minres(A, b, x0::AbstractVector; kwargs...)
MINRES can be warm-started from an initial guess `x0` where `kwargs` are the same keyword arguments as above.
Solve the shifted linear least-squares problem
minimize ‖b - (A + λI)x‖₂²
or the shifted linear system
(A + λI) x = b
of size n using the MINRES method, where λ ≥ 0 is a shift parameter,
where A is Hermitian.
MINRES is formally equivalent to applying CR to Ax=b when A is positive
definite, but is typically more stable and also applies to the case where
A is indefinite.
MINRES produces monotonic residuals ‖r‖₂ and optimality residuals ‖Aᴴr‖₂.
A preconditioner M may be provided in the form of a linear operator and is
assumed to be Hermitian and positive definite.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a Hermitian matrix of dimension n;
* `b`: a vector of length n.
#### Optional argument
* `x0`: a vector of length n that represents an initial guess of the solution x.
#### Output arguments
* `x`: a dense vector of length n;
* `stats`: statistics collected on the run in a [`SimpleStats`](@ref) structure.
#### Reference
* C. C. Paige and M. A. Saunders, [*Solution of Sparse Indefinite Systems of Linear Equations*](https://doi.org/10.1137/0712047), SIAM Journal on Numerical Analysis, 12(4), pp. 617--629, 1975.
"""
function minres end
function minres(A, b :: AbstractVector{FC}, x0 :: AbstractVector; window :: Int=5, kwargs...) where FC <: FloatOrComplex
solver = MinresSolver(A, b, window=window)
minres!(solver, A, b, x0; kwargs...)
return (solver.x, solver.stats)
end
function minres(A, b :: AbstractVector{FC}; window :: Int=5, kwargs...) where FC <: FloatOrComplex
solver = MinresSolver(A, b, window=window)
minres!(solver, A, b; kwargs...)
return (solver.x, solver.stats)
end
"""
solver = minres!(solver::MinresSolver, A, b; kwargs...)
solver = minres!(solver::MinresSolver, A, b, x0; kwargs...)
where `kwargs` are keyword arguments of [`minres`](@ref).
See [`MinresSolver`](@ref) for more details about the `solver`.
"""
function minres! end
function minres!(solver :: MinresSolver{T,FC,S}, A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0)
minres!(solver, A, b; kwargs...)
return solver
end
function minres!(solver :: MinresSolver{T,FC,S}, A, b :: AbstractVector{FC};
M=I, λ :: T=zero(T), atol :: T=√eps(T)/100, rtol :: T=√eps(T)/100,
ratol :: T=zero(T), rrtol :: T=zero(T), etol :: T=√eps(T),
itmax :: Int=0, conlim :: T=1/√eps(T), verbose :: Int=0,
history :: Bool=false, ldiv :: Bool=false, callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
m == n || error("System must be square")
length(b) == n || error("Inconsistent problem size")
(verbose > 0) && @printf("MINRES: system of size %d\n", n)
# Tests M = Iₙ
MisI = (M === I)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
# Set up workspace.
allocate_if(!MisI, solver, :v, S, n)
Δx, x, r1, r2, w1, w2, y = solver.Δx, solver.x, solver.r1, solver.r2, solver.w1, solver.w2, solver.y
err_vec, stats = solver.err_vec, solver.stats
warm_start = solver.warm_start
rNorms, ArNorms, Aconds = stats.residuals, stats.Aresiduals, stats.Acond
reset!(stats)
v = MisI ? r2 : solver.v
ϵM = eps(T)
ctol = conlim > 0 ? 1 / conlim : zero(T)
# Initial solution x₀
x .= zero(FC)
if warm_start
mul!(r1, A, Δx)
(λ ≠ 0) && @kaxpy!(n, λ, Δx, r1)
@kaxpby!(n, one(FC), b, -one(FC), r1)
else
r1 .= b
end
# Initialize Lanczos process.
# β₁ M v₁ = b.
r2 .= r1
MisI || mulorldiv!(v, M, r1, ldiv)
β₁ = @kdotr(m, r1, v)
β₁ < 0 && error("Preconditioner is not positive definite")
if β₁ == 0
stats.niter = 0
stats.solved, stats.inconsistent = true, false
stats.status = "x = 0 is a zero-residual solution"
history && push!(rNorms, β₁)
history && push!(ArNorms, zero(T))
history && push!(Aconds, zero(T))
solver.warm_start = false
return solver
end
β₁ = sqrt(β₁)
β = β₁
oldβ = zero(T)
δbar = zero(T)
ϵ = zero(T)
rNorm = β₁
history && push!(rNorms, β₁)
ϕbar = β₁
rhs1 = β₁
rhs2 = zero(T)
γmax = zero(T)
γmin = T(Inf)
cs = -one(T)
sn = zero(T)
w1 .= zero(FC)
w2 .= zero(FC)
ANorm² = zero(T)
ANorm = zero(T)
Acond = zero(T)
history && push!(Aconds, Acond)
ArNorm = zero(T)
history && push!(ArNorms, ArNorm)
xNorm = zero(T)
xENorm² = zero(T)
err_lbnd = zero(T)
window = length(err_vec)
err_vec .= zero(T)
iter = 0
itmax == 0 && (itmax = 2*n)
(verbose > 0) && @printf("%5s %7s %7s %7s %8s %8s %7s %7s %7s %7s\n", "k", "‖r‖", "‖Aᴴr‖", "β", "cos", "sin", "‖A‖", "κ(A)", "test1", "test2")
kdisplay(iter, verbose) && @printf("%5d %7.1e %7.1e %7.1e %8.1e %8.1e %7.1e %7.1e\n", iter, rNorm, ArNorm, β, cs, sn, ANorm, Acond)
tol = atol + rtol * β₁
rNormtol = ratol + rrtol * β₁
stats.status = "unknown"
solved = solved_mach = solved_lim = (rNorm ≤ rtol)
tired = iter ≥ itmax
ill_cond = ill_cond_mach = ill_cond_lim = false
zero_resid = zero_resid_mach = zero_resid_lim = (rNorm ≤ tol)
fwd_err = false
user_requested_exit = false
while !(solved || tired || ill_cond || user_requested_exit)
iter = iter + 1
# Generate next Lanczos vector.
mul!(y, A, v)
λ ≠ 0 && @kaxpy!(n, λ, v, y) # (y = y + λ * v)
@kscal!(n, one(FC) / β, y)
iter ≥ 2 && @kaxpy!(n, -β / oldβ, r1, y) # (y = y - β / oldβ * r1)
α = real((@kdot(n, v, y) / β))
@kaxpy!(n, -α / β, r2, y) # y = y - α / β * r2
# Compute w.
δ = cs * δbar + sn * α
if iter == 1
w = w2
else
iter ≥ 3 && @kscal!(n, -ϵ, w1)
w = w1
@kaxpy!(n, -δ, w2, w)
end
@kaxpy!(n, one(FC) / β, v, w)
@. r1 = r2
@. r2 = y
MisI || mulorldiv!(v, M, r2, ldiv)
oldβ = β
β = @kdotr(n, r2, v)
β < 0 && error("Preconditioner is not positive definite")
β = sqrt(β)
ANorm² = ANorm² + α * α + oldβ * oldβ + β * β
# Apply rotation to obtain
# [ δₖ ϵₖ₊₁ ] = [ cs sn ] [ δbarₖ 0 ]
# [ γbar δbarₖ₊₁ ] [ sn -cs ] [ αₖ βₖ₊₁ ]
γbar = sn * δbar - cs * α
ϵ = sn * β
δbar = -cs * β
root = sqrt(γbar * γbar + δbar * δbar)
ArNorm = ϕbar * root # = ‖Aᴴrₖ₋₁‖
history && push!(ArNorms, ArNorm)
# Compute the next plane rotation.
γ = sqrt(γbar * γbar + β * β)
γ = max(γ, ϵM)
cs = γbar / γ
sn = β / γ
ϕ = cs * ϕbar
ϕbar = sn * ϕbar
# Final update of w.
@kscal!(n, one(FC) / γ, w)
# Update x.
@kaxpy!(n, ϕ, w, x) # x = x + ϕ * w
xENorm² = xENorm² + ϕ * ϕ
# Update directions for x.
if iter ≥ 2
@kswap(w1, w2)
end
# Compute lower bound on forward error.
err_vec[mod(iter, window) + 1] = ϕ
iter ≥ window && (err_lbnd = norm(err_vec))
γmax = max(γmax, γ)
γmin = min(γmin, γ)
ζ = rhs1 / γ
rhs1 = rhs2 - δ * ζ
rhs2 = -ϵ * ζ
# Estimate various norms.
ANorm = sqrt(ANorm²)
xNorm = @knrm2(n, x)
ϵA = ANorm * ϵM
ϵx = ANorm * xNorm * ϵM
ϵr = ANorm * xNorm * rtol
d = γbar
d == 0 && (d = ϵA)
rNorm = ϕbar
test1 = rNorm / (ANorm * xNorm)
test2 = root / ANorm
history && push!(rNorms, rNorm)
Acond = γmax / γmin
history && push!(Aconds, Acond)
kdisplay(iter, verbose) && @printf("%5d %7.1e %7.1e %7.1e %8.1e %8.1e %7.1e %7.1e %7.1e %7.1e\n", iter, rNorm, ArNorm, β, cs, sn, ANorm, Acond, test1, test2)
if iter == 1 && β / β₁ ≤ 10 * ϵM
# Aᴴb = 0 so x = 0 is a minimum least-squares solution
stats.niter = 1
stats.solved, stats.inconsistent = true, true
stats.status = "x is a minimum least-squares solution"
solver.warm_start = false
return solver
end
# Stopping conditions that do not depend on user input.
# This is to guard against tolerances that are unreasonably small.
ill_cond_mach = (one(T) + one(T) / Acond ≤ one(T))
solved_mach = (one(T) + test2 ≤ one(T))
zero_resid_mach = (one(T) + test1 ≤ one(T))
resid_decrease_mach = (rNorm + one(T) ≤ one(T))
# solved_mach = (ϵx ≥ β₁)
# Stopping conditions based on user-provided tolerances.
tired = iter ≥ itmax
ill_cond_lim = (one(T) / Acond ≤ ctol)
solved_lim = (test2 ≤ tol)
zero_resid_lim = (test1 ≤ tol)
resid_decrease_lim = (rNorm ≤ rNormtol)
iter ≥ window && (fwd_err = err_lbnd ≤ etol * sqrt(xENorm²))
user_requested_exit = callback(solver) :: Bool
zero_resid = zero_resid_mach | zero_resid_lim
resid_decrease = resid_decrease_mach | resid_decrease_lim
ill_cond = ill_cond_mach | ill_cond_lim
solved = solved_mach | solved_lim | zero_resid | fwd_err | resid_decrease
end
(verbose > 0) && @printf("\n")
tired && (status = "maximum number of iterations exceeded")
ill_cond_mach && (status = "condition number seems too large for this machine")
ill_cond_lim && (status = "condition number exceeds tolerance")
solved && (status = "found approximate minimum least-squares solution")
zero_resid && (status = "found approximate zero-residual solution")
fwd_err && (status = "truncated forward error small enough")
user_requested_exit && (status = "user-requested exit")
# Update x
warm_start && @kaxpy!(n, one(FC), Δx, x)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.solved = solved
stats.inconsistent = !zero_resid
stats.status = status
return solver
end