-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathdqgmres.jl
293 lines (240 loc) · 11 KB
/
dqgmres.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
# An implementation of DQGMRES for the solution of the square linear system Ax = b.
#
# This method is described in
#
# Y. Saad and K. Wu, DQGMRES: a quasi minimal residual algorithm based on incomplete orthogonalization.
# Numerical Linear Algebra with Applications, Vol. 3(4), pp. 329--343, 1996.
#
# Alexis Montoison, <[email protected]>
# Montreal, August 2018.
export dqgmres, dqgmres!
"""
(x, stats) = dqgmres(A, b::AbstractVector{FC};
memory::Int=20, M=I, N=I, atol::T=√eps(T),
rtol::T=√eps(T), reorthogonalization::Bool=false,
itmax::Int=0, verbose::Int=0, history::Bool=false,
ldiv::Bool=false, callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, stats) = dqgmres(A, b, x0::AbstractVector; kwargs...)
DQGMRES can be warm-started from an initial guess `x0` where `kwargs` are the same keyword arguments as above.
Solve the consistent linear system Ax = b of size n using DQGMRES.
DQGMRES algorithm is based on the incomplete Arnoldi orthogonalization process
and computes a sequence of approximate solutions with the quasi-minimal residual property.
DQGMRES only orthogonalizes the new vectors of the Krylov basis against the `memory` most recent vectors.
If MINRES is well defined on `Ax = b` and `memory = 2`, DQGMRES is theoretically equivalent to MINRES.
If `k ≤ memory` where `k` is the number of iterations, DQGMRES is theoretically equivalent to GMRES.
Otherwise, DQGMRES interpolates between MINRES and GMRES and is similar to MINRES with partial reorthogonalization.
Partial reorthogonalization is available with the `reorthogonalization` option.
This implementation allows a left preconditioner M and a right preconditioner N.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a matrix of dimension n;
* `b`: a vector of length n.
#### Optional argument
* `x0`: a vector of length n that represents an initial guess of the solution x.
#### Output arguments
* `x`: a dense vector of length n;
* `stats`: statistics collected on the run in a [`SimpleStats`](@ref) structure.
#### Reference
* Y. Saad and K. Wu, [*DQGMRES: a quasi minimal residual algorithm based on incomplete orthogonalization*](https://doi.org/10.1002/(SICI)1099-1506(199607/08)3:4%3C329::AID-NLA86%3E3.0.CO;2-8), Numerical Linear Algebra with Applications, Vol. 3(4), pp. 329--343, 1996.
"""
function dqgmres end
function dqgmres(A, b :: AbstractVector{FC}, x0 :: AbstractVector; memory :: Int=20, kwargs...) where FC <: FloatOrComplex
solver = DqgmresSolver(A, b, memory)
dqgmres!(solver, A, b, x0; kwargs...)
return (solver.x, solver.stats)
end
function dqgmres(A, b :: AbstractVector{FC}; memory :: Int=20, kwargs...) where FC <: FloatOrComplex
solver = DqgmresSolver(A, b, memory)
dqgmres!(solver, A, b; kwargs...)
return (solver.x, solver.stats)
end
"""
solver = dqgmres!(solver::DqgmresSolver, A, b; kwargs...)
solver = dqgmres!(solver::DqgmresSolver, A, b, x0; kwargs...)
where `kwargs` are keyword arguments of [`dqgmres`](@ref).
Note that the `memory` keyword argument is the only exception.
It's required to create a `DqgmresSolver` and can't be changed later.
See [`DqgmresSolver`](@ref) for more details about the `solver`.
"""
function dqgmres! end
function dqgmres!(solver :: DqgmresSolver{T,FC,S}, A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0)
dqgmres!(solver, A, b; kwargs...)
return solver
end
function dqgmres!(solver :: DqgmresSolver{T,FC,S}, A, b :: AbstractVector{FC};
M=I, N=I, atol :: T=√eps(T), rtol :: T=√eps(T),
reorthogonalization :: Bool=false, itmax :: Int=0,
verbose :: Int=0, history :: Bool=false,
ldiv :: Bool=false, callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
m == n || error("System must be square")
length(b) == m || error("Inconsistent problem size")
(verbose > 0) && @printf("DQGMRES: system of size %d\n", n)
# Check M = Iₙ and N = Iₙ
MisI = (M === I)
NisI = (N === I)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
# Set up workspace.
allocate_if(!MisI, solver, :w, S, n)
allocate_if(!NisI, solver, :z, S, n)
Δx, x, t, P, V = solver.Δx, solver.x, solver.t, solver.P, solver.V
c, s, H, stats = solver.c, solver.s, solver.H, solver.stats
warm_start = solver.warm_start
rNorms = stats.residuals
reset!(stats)
w = MisI ? t : solver.w
r₀ = MisI ? t : solver.w
# Initial solution x₀ and residual r₀.
x .= zero(FC) # x₀
if warm_start
mul!(t, A, Δx)
@kaxpby!(n, one(FC), b, -one(FC), t)
else
t .= b
end
MisI || mulorldiv!(r₀, M, t, ldiv) # M(b - Ax₀)
rNorm = @knrm2(n, r₀) # β = ‖r₀‖₂
history && push!(rNorms, rNorm)
if rNorm == 0
stats.niter = 0
stats.solved, stats.inconsistent = true, false
stats.status = "x = 0 is a zero-residual solution"
solver.warm_start = false
return solver
end
iter = 0
itmax == 0 && (itmax = 2*n)
ε = atol + rtol * rNorm
(verbose > 0) && @printf("%5s %7s\n", "k", "‖rₖ‖")
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, rNorm)
# Set up workspace.
mem = length(V) # Memory.
for i = 1 : mem
V[i] .= zero(FC) # Orthogonal basis of Kₖ(MAN, Mr₀).
P[i] .= zero(FC) # Directions for x : Pₖ = NVₖ(Rₖ)⁻¹.
end
c .= zero(T) # Last mem Givens cosines used for the factorization QₖRₖ = Hₖ.
s .= zero(FC) # Last mem Givens sines used for the factorization QₖRₖ = Hₖ.
H .= zero(FC) # Last column of the band hessenberg matrix Hₖ.
# Each column has at most mem + 1 nonzero elements.
# hᵢ.ₖ is stored as H[k-i+1], i ≤ k. hₖ₊₁.ₖ is not stored in H.
# k-i+1 represents the indice of the diagonal where hᵢ.ₖ is located.
# In addition of that, the last column of Rₖ is also stored in H.
# Initial γ₁ and V₁.
γₖ = rNorm # γₖ and γₖ₊₁ are the last components of gₖ, right-hand of the least squares problem min ‖ Hₖyₖ - gₖ ‖₂.
V[1] .= r₀ ./ rNorm
# The following stopping criterion compensates for the lag in the
# residual, but usually increases the number of iterations.
# solved = sqrt(max(1, iter-mem+1)) * |γₖ₊₁| ≤ ε
solved = rNorm ≤ ε # less accurate, but acceptable.
tired = iter ≥ itmax
status = "unknown"
user_requested_exit = false
while !(solved || tired || user_requested_exit)
# Update iteration index.
iter = iter + 1
# Set position in circulars stacks.
pos = mod(iter-1, mem) + 1 # Position corresponding to pₖ and vₖ in circular stacks P and V.
next_pos = mod(iter, mem) + 1 # Position corresponding to vₖ₊₁ in the circular stack V.
# Incomplete Arnoldi procedure.
z = NisI ? V[pos] : solver.z
NisI || mulorldiv!(z, N, V[pos], ldiv) # Nvₖ, forms pₖ
mul!(t, A, z) # ANvₖ
MisI || mulorldiv!(w, M, t, ldiv) # MANvₖ, forms vₖ₊₁
for i = max(1, iter-mem+1) : iter
ipos = mod(i-1, mem) + 1 # Position corresponding to vᵢ in the circular stack V.
diag = iter - i + 1
H[diag] = @kdot(n, w, V[ipos]) # hᵢ.ₖ = ⟨MANvₖ, vᵢ⟩
@kaxpy!(n, -H[diag], V[ipos], w) # w ← w - hᵢ.ₖvᵢ
end
# Partial reorthogonalization of the Krylov basis.
if reorthogonalization
for i = max(1, iter-mem+1) : iter
ipos = mod(i-1, mem) + 1
diag = iter - i + 1
Htmp = @kdot(n, w, V[ipos])
H[diag] += Htmp
@kaxpy!(n, -Htmp, V[ipos], w)
end
end
# Compute hₖ₊₁.ₖ and vₖ₊₁.
Haux = @knrm2(n, w) # hₖ₊₁.ₖ = ‖vₖ₊₁‖₂
if Haux ≠ 0 # hₖ₊₁.ₖ = 0 ⇒ "lucky breakdown"
V[next_pos] .= w ./ Haux # vₖ₊₁ = w / hₖ₊₁.ₖ
end
# rₖ₋ₘₑₘ.ₖ ≠ 0 when k ≥ mem + 1
# We don't want to use rₖ₋₁₋ₘₑₘ.ₖ₋₁ when we compute rₖ₋ₘₑₘ.ₖ
if iter ≥ mem + 2
H[mem+1] = zero(FC) # rₖ₋ₘₑₘ.ₖ = 0
end
# Update the QR factorization of Hₖ.
# Apply mem previous Givens reflections Ωᵢ.
for i = max(1,iter-mem) : iter-1
irot_pos = mod(i-1, mem) + 1 # Position corresponding to cᵢ and sᵢ in circular stacks c and s.
diag = iter - i
next_diag = diag + 1
Htmp = c[irot_pos] * H[next_diag] + s[irot_pos] * H[diag]
H[diag] = conj(s[irot_pos]) * H[next_diag] - c[irot_pos] * H[diag]
H[next_diag] = Htmp
end
# Compute and apply current Givens reflection Ωₖ.
# [cₖ sₖ] [ hₖ.ₖ ] = [ρₖ]
# [sₖ -cₖ] [hₖ₊₁.ₖ] [0 ]
(c[pos], s[pos], H[1]) = sym_givens(H[1], Haux)
γₖ₊₁ = conj(s[pos]) * γₖ
γₖ = c[pos] * γₖ
# Compute the direction pₖ, the last column of Pₖ = NVₖ(Rₖ)⁻¹.
for i = max(1,iter-mem) : iter-1
ipos = mod(i-1, mem) + 1 # Position corresponding to pᵢ in the circular stack P.
diag = iter - i + 1
if ipos == pos
# pₐᵤₓ ← -hₖ₋ₘₑₘ.ₖ * pₖ₋ₘₑₘ
@kscal!(n, -H[diag], P[pos])
else
# pₐᵤₓ ← pₐᵤₓ - hᵢ.ₖ * pᵢ
@kaxpy!(n, -H[diag], P[ipos], P[pos])
end
end
# pₐᵤₓ ← pₐᵤₓ + Nvₖ
@kaxpy!(n, one(FC), z, P[pos])
# pₖ = pₐᵤₓ / hₖ.ₖ
P[pos] .= P[pos] ./ H[1]
# Compute solution xₖ.
# xₖ ← xₖ₋₁ + γₖ * pₖ
@kaxpy!(n, γₖ, P[pos], x)
# Update residual norm estimate.
# ‖ M(b - Axₖ) ‖₂ ≈ |γₖ₊₁|
rNorm = abs(γₖ₊₁)
history && push!(rNorms, rNorm)
# Update γₖ.
γₖ = γₖ₊₁
# Stopping conditions that do not depend on user input.
# This is to guard against tolerances that are unreasonably small.
resid_decrease_mach = (rNorm + one(T) ≤ one(T))
# Update stopping criterion.
user_requested_exit = callback(solver) :: Bool
resid_decrease_lim = rNorm ≤ ε
solved = resid_decrease_lim || resid_decrease_mach
tired = iter ≥ itmax
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, rNorm)
end
(verbose > 0) && @printf("\n")
solved && (status = "solution good enough given atol and rtol")
tired && (status = "maximum number of iterations exceeded")
user_requested_exit && (status = "user-requested exit")
# Update x
warm_start && @kaxpy!(n, one(FC), Δx, x)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.solved = solved
stats.inconsistent = false
stats.status = status
return solver
end