-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathcgs.jl
241 lines (192 loc) · 8.45 KB
/
cgs.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# An implementation of CGS for the solution of the square linear system Ax = b.
#
# This method is described in
#
# P. Sonneveld, CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems.
# SIAM Journal on Scientific and Statistical Computing, 10(1), pp. 36--52, 1989.
#
# Alexis Montoison, <[email protected]>
# Montreal, October 2018.
export cgs, cgs!
"""
(x, stats) = cgs(A, b::AbstractVector{FC};
c::AbstractVector{FC}=b, M=I, N=I, atol::T=√eps(T),
rtol::T=√eps(T), itmax::Int=0, verbose::Int=0,
history::Bool=false, ldiv::Bool=false, callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, stats) = cgs(A, b, x0::AbstractVector; kwargs...)
CGS can be warm-started from an initial guess `x0` where `kwargs` are the same keyword arguments as above.
Solve the consistent linear system Ax = b of size n using CGS.
CGS requires two initial vectors `b` and `c`.
The relation `bᴴc ≠ 0` must be satisfied and by default `c = b`.
From "Iterative Methods for Sparse Linear Systems (Y. Saad)" :
«The method is based on a polynomial variant of the conjugate gradients algorithm.
Although related to the so-called bi-conjugate gradients (BCG) algorithm,
it does not involve adjoint matrix-vector multiplications, and the expected convergence
rate is about twice that of the BCG algorithm.
The Conjugate Gradient Squared algorithm works quite well in many cases.
However, one difficulty is that, since the polynomials are squared, rounding errors
tend to be more damaging than in the standard BCG algorithm. In particular, very
high variations of the residual vectors often cause the residual norms computed
to become inaccurate.
TFQMR and BICGSTAB were developed to remedy this difficulty.»
This implementation allows a left preconditioner M and a right preconditioner N.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a matrix of dimension n;
* `b`: a vector of length n.
#### Optional argument
* `x0`: a vector of length n that represents an initial guess of the solution x.
#### Output arguments
* `x`: a dense vector of length n;
* `stats`: statistics collected on the run in a [`SimpleStats`](@ref) structure.
#### Reference
* P. Sonneveld, [*CGS, A Fast Lanczos-Type Solver for Nonsymmetric Linear systems*](https://doi.org/10.1137/0910004), SIAM Journal on Scientific and Statistical Computing, 10(1), pp. 36--52, 1989.
"""
function cgs end
function cgs(A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where FC <: FloatOrComplex
solver = CgsSolver(A, b)
cgs!(solver, A, b, x0; kwargs...)
return (solver.x, solver.stats)
end
function cgs(A, b :: AbstractVector{FC}; kwargs...) where FC <: FloatOrComplex
solver = CgsSolver(A, b)
cgs!(solver, A, b; kwargs...)
return (solver.x, solver.stats)
end
"""
solver = cgs!(solver::CgsSolver, A, b; kwargs...)
solver = cgs!(solver::CgsSolver, A, b, x0; kwargs...)
where `kwargs` are keyword arguments of [`cgs`](@ref).
See [`CgsSolver`](@ref) for more details about the `solver`.
"""
function cgs! end
function cgs!(solver :: CgsSolver{T,FC,S}, A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0)
cgs!(solver, A, b; kwargs...)
return solver
end
function cgs!(solver :: CgsSolver{T,FC,S}, A, b :: AbstractVector{FC}; c :: AbstractVector{FC}=b,
M=I, N=I, atol :: T=√eps(T), rtol :: T=√eps(T),
itmax :: Int=0, verbose :: Int=0, history :: Bool=false,
ldiv :: Bool=false, callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
m == n || error("System must be square")
length(b) == m || error("Inconsistent problem size")
(verbose > 0) && @printf("CGS: system of size %d\n", n)
# Check M = Iₙ and N = Iₙ
MisI = (M === I)
NisI = (N === I)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
ktypeof(c) <: S || error("ktypeof(c) is not a subtype of $S")
# Set up workspace.
allocate_if(!MisI, solver, :vw, S, n)
allocate_if(!NisI, solver, :yz, S, n)
Δx, x, r, u, p, q, ts, stats = solver.Δx, solver.x, solver.r, solver.u, solver.p, solver.q, solver.ts, solver.stats
warm_start = solver.warm_start
rNorms = stats.residuals
reset!(stats)
t = s = solver.ts
v = MisI ? t : solver.vw
w = MisI ? s : solver.vw
y = NisI ? p : solver.yz
z = NisI ? u : solver.yz
r₀ = MisI ? r : solver.ts
if warm_start
mul!(r₀, A, Δx)
@kaxpby!(n, one(FC), b, -one(FC), r₀)
else
r₀ .= b
end
x .= zero(FC) # x₀
MisI || mulorldiv!(r, M, r₀, ldiv) # r₀
# Compute residual norm ‖r₀‖₂.
rNorm = @knrm2(n, r)
history && push!(rNorms, rNorm)
if rNorm == 0
stats.niter = 0
stats.solved, stats.inconsistent = true, false
stats.status = "x = 0 is a zero-residual solution"
solver.warm_start = false
return solver
end
# Compute ρ₀ = ⟨ r̅₀,r₀ ⟩
ρ = @kdot(n, c, r)
if ρ == 0
stats.niter = 0
stats.solved, stats.inconsistent = false, false
stats.status = "Breakdown bᴴc = 0"
solver.warm_start =false
return solver
end
iter = 0
itmax == 0 && (itmax = 2*n)
ε = atol + rtol * rNorm
(verbose > 0) && @printf("%5s %7s\n", "k", "‖rₖ‖")
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, rNorm)
u .= r # u₀
p .= r # p₀
q .= zero(FC) # q₋₁
# Stopping criterion.
solved = rNorm ≤ ε
tired = iter ≥ itmax
breakdown = false
status = "unknown"
user_requested_exit = false
while !(solved || tired || breakdown || user_requested_exit)
NisI || mulorldiv!(y, N, p, ldiv) # yₖ = N⁻¹pₖ
mul!(t, A, y) # tₖ = Ayₖ
MisI || mulorldiv!(v, M, t, ldiv) # vₖ = M⁻¹tₖ
σ = @kdot(n, c, v) # σₖ = ⟨ r̅₀,M⁻¹AN⁻¹pₖ ⟩
α = ρ / σ # αₖ = ρₖ / σₖ
@kcopy!(n, u, q) # qₖ = uₖ
@kaxpy!(n, -α, v, q) # qₖ = qₖ - αₖ * M⁻¹AN⁻¹pₖ
@kaxpy!(n, one(FC), q, u) # uₖ₊½ = uₖ + qₖ
NisI || mulorldiv!(z, N, u, ldiv) # zₖ = N⁻¹uₖ₊½
@kaxpy!(n, α, z, x) # xₖ₊₁ = xₖ + αₖ * N⁻¹(uₖ + qₖ)
mul!(s, A, z) # sₖ = Azₖ
MisI || mulorldiv!(w, M, s, ldiv) # wₖ = M⁻¹sₖ
@kaxpy!(n, -α, w, r) # rₖ₊₁ = rₖ - αₖ * M⁻¹AN⁻¹(uₖ + qₖ)
ρ_next = @kdot(n, c, r) # ρₖ₊₁ = ⟨ r̅₀,rₖ₊₁ ⟩
β = ρ_next / ρ # βₖ = ρₖ₊₁ / ρₖ
@kcopy!(n, r, u) # uₖ₊₁ = rₖ₊₁
@kaxpy!(n, β, q, u) # uₖ₊₁ = uₖ₊₁ + βₖ * qₖ
@kaxpby!(n, one(FC), q, β, p) # pₐᵤₓ = qₖ + βₖ * pₖ
@kaxpby!(n, one(FC), u, β, p) # pₖ₊₁ = uₖ₊₁ + βₖ * pₐᵤₓ
# Update ρ.
ρ = ρ_next # ρₖ ← ρₖ₊₁
# Update iteration index.
iter = iter + 1
# Compute residual norm ‖rₖ‖₂.
rNorm = @knrm2(n, r)
history && push!(rNorms, rNorm)
# Stopping conditions that do not depend on user input.
# This is to guard against tolerances that are unreasonably small.
resid_decrease_mach = (rNorm + one(T) ≤ one(T))
# Update stopping criterion.
user_requested_exit = callback(solver) :: Bool
resid_decrease_lim = rNorm ≤ ε
solved = resid_decrease_lim || resid_decrease_mach
tired = iter ≥ itmax
breakdown = (α == 0 || isnan(α))
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, rNorm)
end
(verbose > 0) && @printf("\n")
tired && (status = "maximum number of iterations exceeded")
breakdown && (status = "breakdown αₖ == 0")
solved && (status = "solution good enough given atol and rtol")
user_requested_exit && (status = "user-requested exit")
# Update x
warm_start && @kaxpy!(n, one(FC), Δx, x)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.solved = solved
stats.inconsistent = false
stats.status = status
return solver
end