-
Notifications
You must be signed in to change notification settings - Fork 56
/
Copy pathbilq.jl
342 lines (284 loc) · 13.3 KB
/
bilq.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
# An implementation of BiLQ for the solution of unsymmetric
# and square consistent linear system Ax = b.
#
# This method is described in
#
# A. Montoison and D. Orban
# BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property.
# SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
#
# Alexis Montoison, <[email protected]>
# Montreal, February 2019.
export bilq, bilq!
"""
(x, stats) = bilq(A, b::AbstractVector{FC};
c::AbstractVector{FC}=b, atol::T=√eps(T),
rtol::T=√eps(T), transfer_to_bicg::Bool=true,
itmax::Int=0, verbose::Int=0,
history::Bool=false, callback=solver->false)
`T` is an `AbstractFloat` such as `Float32`, `Float64` or `BigFloat`.
`FC` is `T` or `Complex{T}`.
(x, stats) = bilq(A, b, x0::AbstractVector; kwargs...)
BiLQ can be warm-started from an initial guess `x0` where `kwargs` are the same keyword arguments as above.
Solve the square linear system Ax = b of size n using BiLQ.
BiLQ is based on the Lanczos biorthogonalization process and requires two initial vectors `b` and `c`.
The relation `bᴴc ≠ 0` must be satisfied and by default `c = b`.
When `A` is symmetric and `b = c`, BiLQ is equivalent to SYMMLQ.
An option gives the possibility of transferring to the BiCG point,
when it exists. The transfer is based on the residual norm.
The callback is called as `callback(solver)` and should return `true` if the main loop should terminate,
and `false` otherwise.
#### Input arguments
* `A`: a linear operator that models a matrix of dimension n;
* `b`: a vector of length n.
#### Optional argument
* `x0`: a vector of length n that represents an initial guess of the solution x.
#### Output arguments
* `x`: a dense vector of length n;
* `stats`: statistics collected on the run in a [`SimpleStats`](@ref) structure.
#### References
* A. Montoison and D. Orban, [*BiLQ: An Iterative Method for Nonsymmetric Linear Systems with a Quasi-Minimum Error Property*](https://doi.org/10.1137/19M1290991), SIAM Journal on Matrix Analysis and Applications, 41(3), pp. 1145--1166, 2020.
* R. Fletcher, [*Conjugate gradient methods for indefinite systems*](https://doi.org/10.1007/BFb0080116), Numerical Analysis, Springer, pp. 73--89, 1976.
"""
function bilq end
function bilq(A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where FC <: FloatOrComplex
solver = BilqSolver(A, b)
bilq!(solver, A, b, x0; kwargs...)
return (solver.x, solver.stats)
end
function bilq(A, b :: AbstractVector{FC}; kwargs...) where FC <: FloatOrComplex
solver = BilqSolver(A, b)
bilq!(solver, A, b; kwargs...)
return (solver.x, solver.stats)
end
"""
solver = bilq!(solver::BilqSolver, A, b; kwargs...)
solver = bilq!(solver::BilqSolver, A, b, x0; kwargs...)
where `kwargs` are keyword arguments of [`bilq`](@ref).
See [`BilqSolver`](@ref) for more details about the `solver`.
"""
function bilq! end
function bilq!(solver :: BilqSolver{T,FC,S}, A, b :: AbstractVector{FC}, x0 :: AbstractVector; kwargs...) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
warm_start!(solver, x0)
bilq!(solver, A, b; kwargs...)
return solver
end
function bilq!(solver :: BilqSolver{T,FC,S}, A, b :: AbstractVector{FC}; c :: AbstractVector{FC}=b,
atol :: T=√eps(T), rtol :: T=√eps(T), transfer_to_bicg :: Bool=true,
itmax :: Int=0, verbose :: Int=0, history :: Bool=false,
callback = solver -> false) where {T <: AbstractFloat, FC <: FloatOrComplex{T}, S <: DenseVector{FC}}
m, n = size(A)
m == n || error("System must be square")
length(b) == m || error("Inconsistent problem size")
(verbose > 0) && @printf("BILQ: system of size %d\n", n)
# Check type consistency
eltype(A) == FC || error("eltype(A) ≠ $FC")
ktypeof(b) <: S || error("ktypeof(b) is not a subtype of $S")
ktypeof(c) <: S || error("ktypeof(c) is not a subtype of $S")
# Compute the adjoint of A
Aᴴ = A'
# Set up workspace.
uₖ₋₁, uₖ, q, vₖ₋₁, vₖ = solver.uₖ₋₁, solver.uₖ, solver.q, solver.vₖ₋₁, solver.vₖ
p, Δx, x, d̅, stats = solver.p, solver.Δx, solver.x, solver.d̅, solver.stats
warm_start = solver.warm_start
rNorms = stats.residuals
reset!(stats)
r₀ = warm_start ? q : b
if warm_start
mul!(r₀, A, Δx)
@kaxpby!(n, one(FC), b, -one(FC), r₀)
end
# Initial solution x₀ and residual norm ‖r₀‖.
x .= zero(FC)
bNorm = @knrm2(n, r₀) # ‖r₀‖ = ‖b₀ - Ax₀‖
history && push!(rNorms, bNorm)
if bNorm == 0
stats.niter = 0
stats.solved = true
stats.inconsistent = false
stats.status = "x = 0 is a zero-residual solution"
solver.warm_start = false
return solver
end
iter = 0
itmax == 0 && (itmax = 2*n)
ε = atol + rtol * bNorm
(verbose > 0) && @printf("%5s %7s\n", "k", "‖rₖ‖")
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, bNorm)
# Initialize the Lanczos biorthogonalization process.
cᴴb = @kdot(n, c, r₀) # ⟨c,r₀⟩
if cᴴb == 0
stats.niter = 0
stats.solved = false
stats.inconsistent = false
stats.status = "Breakdown bᴴc = 0"
solver.warm_start = false
return solver
end
βₖ = √(abs(cᴴb)) # β₁γ₁ = cᴴ(b - Ax₀)
γₖ = cᴴb / βₖ # β₁γ₁ = cᴴ(b - Ax₀)
vₖ₋₁ .= zero(FC) # v₀ = 0
uₖ₋₁ .= zero(FC) # u₀ = 0
vₖ .= r₀ ./ βₖ # v₁ = (b - Ax₀) / β₁
uₖ .= c ./ conj(γₖ) # u₁ = c / γ̄₁
cₖ₋₁ = cₖ = -one(T) # Givens cosines used for the LQ factorization of Tₖ
sₖ₋₁ = sₖ = zero(FC) # Givens sines used for the LQ factorization of Tₖ
d̅ .= zero(FC) # Last column of D̅ₖ = Vₖ(Qₖ)ᴴ
ζₖ₋₁ = ζbarₖ = zero(FC) # ζₖ₋₁ and ζbarₖ are the last components of z̅ₖ = (L̅ₖ)⁻¹β₁e₁
ζₖ₋₂ = ηₖ = zero(FC) # ζₖ₋₂ and ηₖ are used to update ζₖ₋₁ and ζbarₖ
δbarₖ₋₁ = δbarₖ = zero(FC) # Coefficients of Lₖ₋₁ and L̅ₖ modified over the course of two iterations
norm_vₖ = bNorm / βₖ # ‖vₖ‖ is used for residual norm estimates
# Stopping criterion.
solved_lq = bNorm ≤ ε
solved_cg = false
breakdown = false
tired = iter ≥ itmax
status = "unknown"
user_requested_exit = false
while !(solved_lq || solved_cg || tired || breakdown || user_requested_exit)
# Update iteration index.
iter = iter + 1
# Continue the Lanczos biorthogonalization process.
# AVₖ = VₖTₖ + βₖ₊₁vₖ₊₁(eₖ)ᵀ = Vₖ₊₁Tₖ₊₁.ₖ
# AᴴUₖ = Uₖ(Tₖ)ᴴ + γ̄ₖ₊₁uₖ₊₁(eₖ)ᵀ = Uₖ₊₁(Tₖ.ₖ₊₁)ᴴ
mul!(q, A , vₖ) # Forms vₖ₊₁ : q ← Avₖ
mul!(p, Aᴴ, uₖ) # Forms uₖ₊₁ : p ← Aᴴuₖ
@kaxpy!(n, -γₖ, vₖ₋₁, q) # q ← q - γₖ * vₖ₋₁
@kaxpy!(n, -βₖ, uₖ₋₁, p) # p ← p - β̄ₖ * uₖ₋₁
αₖ = @kdot(n, uₖ, q) # αₖ = ⟨uₖ,q⟩
@kaxpy!(n, - αₖ , vₖ, q) # q ← q - αₖ * vₖ
@kaxpy!(n, -conj(αₖ), uₖ, p) # p ← p - ᾱₖ * uₖ
pᴴq = @kdot(n, p, q) # pᴴq = ⟨p,q⟩
βₖ₊₁ = √(abs(pᴴq)) # βₖ₊₁ = √(|pᴴq|)
γₖ₊₁ = pᴴq / βₖ₊₁ # γₖ₊₁ = pᴴq / βₖ₊₁
# Update the LQ factorization of Tₖ = L̅ₖQₖ.
# [ α₁ γ₂ 0 • • • 0 ] [ δ₁ 0 • • • • 0 ]
# [ β₂ α₂ γ₃ • • ] [ λ₁ δ₂ • • ]
# [ 0 • • • • • ] [ ϵ₁ λ₂ δ₃ • • ]
# [ • • • • • • • ] = [ 0 • • • • • ] Qₖ
# [ • • • • • 0 ] [ • • • • • • • ]
# [ • • • • γₖ] [ • • • • • 0 ]
# [ 0 • • • 0 βₖ αₖ] [ • • • 0 ϵₖ₋₂ λₖ₋₁ δbarₖ]
if iter == 1
δbarₖ = αₖ
elseif iter == 2
# [δbar₁ γ₂] [c₂ s̄₂] = [δ₁ 0 ]
# [ β₂ α₂] [s₂ -c₂] [λ₁ δbar₂]
(cₖ, sₖ, δₖ₋₁) = sym_givens(δbarₖ₋₁, γₖ)
λₖ₋₁ = cₖ * βₖ + sₖ * αₖ
δbarₖ = conj(sₖ) * βₖ - cₖ * αₖ
else
# [0 βₖ αₖ] [cₖ₋₁ s̄ₖ₋₁ 0] = [sₖ₋₁βₖ -cₖ₋₁βₖ αₖ]
# [sₖ₋₁ -cₖ₋₁ 0]
# [ 0 0 1]
#
# [ λₖ₋₂ δbarₖ₋₁ γₖ] [1 0 0 ] = [λₖ₋₂ δₖ₋₁ 0 ]
# [sₖ₋₁βₖ -cₖ₋₁βₖ αₖ] [0 cₖ s̄ₖ] [ϵₖ₋₂ λₖ₋₁ δbarₖ]
# [0 sₖ -cₖ]
(cₖ, sₖ, δₖ₋₁) = sym_givens(δbarₖ₋₁, γₖ)
ϵₖ₋₂ = sₖ₋₁ * βₖ
λₖ₋₁ = -cₖ₋₁ * cₖ * βₖ + sₖ * αₖ
δbarₖ = -cₖ₋₁ * conj(sₖ) * βₖ - cₖ * αₖ
end
# Compute ζₖ₋₁ and ζbarₖ, last components of the solution of L̅ₖz̅ₖ = β₁e₁
# [δbar₁] [ζbar₁] = [β₁]
if iter == 1
ηₖ = βₖ
end
# [δ₁ 0 ] [ ζ₁ ] = [β₁]
# [λ₁ δbar₂] [ζbar₂] [0 ]
if iter == 2
ηₖ₋₁ = ηₖ
ζₖ₋₁ = ηₖ₋₁ / δₖ₋₁
ηₖ = -λₖ₋₁ * ζₖ₋₁
end
# [λₖ₋₂ δₖ₋₁ 0 ] [ζₖ₋₂ ] = [0]
# [ϵₖ₋₂ λₖ₋₁ δbarₖ] [ζₖ₋₁ ] [0]
# [ζbarₖ]
if iter ≥ 3
ζₖ₋₂ = ζₖ₋₁
ηₖ₋₁ = ηₖ
ζₖ₋₁ = ηₖ₋₁ / δₖ₋₁
ηₖ = -ϵₖ₋₂ * ζₖ₋₂ - λₖ₋₁ * ζₖ₋₁
end
# Relations for the directions dₖ₋₁ and d̅ₖ, the last two columns of D̅ₖ = Vₖ(Qₖ)ᴴ.
# [d̅ₖ₋₁ vₖ] [cₖ s̄ₖ] = [dₖ₋₁ d̅ₖ] ⟷ dₖ₋₁ = cₖ * d̅ₖ₋₁ + sₖ * vₖ
# [sₖ -cₖ] ⟷ d̅ₖ = s̄ₖ * d̅ₖ₋₁ - cₖ * vₖ
if iter ≥ 2
# Compute solution xₖ.
# (xᴸ)ₖ₋₁ ← (xᴸ)ₖ₋₂ + ζₖ₋₁ * dₖ₋₁
@kaxpy!(n, ζₖ₋₁ * cₖ, d̅, x)
@kaxpy!(n, ζₖ₋₁ * sₖ, vₖ, x)
end
# Compute d̅ₖ.
if iter == 1
# d̅₁ = v₁
@. d̅ = vₖ
else
# d̅ₖ = s̄ₖ * d̅ₖ₋₁ - cₖ * vₖ
@kaxpby!(n, -cₖ, vₖ, conj(sₖ), d̅)
end
# Compute vₖ₊₁ and uₖ₊₁.
@. vₖ₋₁ = vₖ # vₖ₋₁ ← vₖ
@. uₖ₋₁ = uₖ # uₖ₋₁ ← uₖ
if pᴴq ≠ 0
@. vₖ = q / βₖ₊₁ # βₖ₊₁vₖ₊₁ = q
@. uₖ = p / conj(γₖ₊₁) # γ̄ₖ₊₁uₖ₊₁ = p
end
# Compute ⟨vₖ,vₖ₊₁⟩ and ‖vₖ₊₁‖
vₖᴴvₖ₊₁ = @kdot(n, vₖ₋₁, vₖ)
norm_vₖ₊₁ = @knrm2(n, vₖ)
# Compute BiLQ residual norm
# ‖rₖ‖ = √(|μₖ|²‖vₖ‖² + |ωₖ|²‖vₖ₊₁‖² + μ̄ₖωₖ⟨vₖ,vₖ₊₁⟩ + μₖω̄ₖ⟨vₖ₊₁,vₖ⟩)
if iter == 1
rNorm_lq = bNorm
else
μₖ = βₖ * (sₖ₋₁ * ζₖ₋₂ - cₖ₋₁ * cₖ * ζₖ₋₁) + αₖ * sₖ * ζₖ₋₁
ωₖ = βₖ₊₁ * sₖ * ζₖ₋₁
θₖ = conj(μₖ) * ωₖ * vₖᴴvₖ₊₁
rNorm_lq = sqrt(abs2(μₖ) * norm_vₖ^2 + abs2(ωₖ) * norm_vₖ₊₁^2 + 2 * real(θₖ))
end
history && push!(rNorms, rNorm_lq)
# Compute BiCG residual norm
# ‖rₖ‖ = |ρₖ| * ‖vₖ₊₁‖
if transfer_to_bicg && (abs(δbarₖ) > eps(T))
ζbarₖ = ηₖ / δbarₖ
ρₖ = βₖ₊₁ * (sₖ * ζₖ₋₁ - cₖ * ζbarₖ)
rNorm_cg = abs(ρₖ) * norm_vₖ₊₁
end
# Update sₖ₋₁, cₖ₋₁, γₖ, βₖ, δbarₖ₋₁ and norm_vₖ.
sₖ₋₁ = sₖ
cₖ₋₁ = cₖ
γₖ = γₖ₊₁
βₖ = βₖ₊₁
δbarₖ₋₁ = δbarₖ
norm_vₖ = norm_vₖ₊₁
# Update stopping criterion.
user_requested_exit = callback(solver) :: Bool
solved_lq = rNorm_lq ≤ ε
solved_cg = transfer_to_bicg && (abs(δbarₖ) > eps(T)) && (rNorm_cg ≤ ε)
tired = iter ≥ itmax
breakdown = !solved_lq && !solved_cg && (pᴴq == 0)
kdisplay(iter, verbose) && @printf("%5d %7.1e\n", iter, rNorm_lq)
end
(verbose > 0) && @printf("\n")
# Compute BICG point
# (xᶜ)ₖ ← (xᴸ)ₖ₋₁ + ζbarₖ * d̅ₖ
if solved_cg
@kaxpy!(n, ζbarₖ, d̅, x)
end
tired && (status = "maximum number of iterations exceeded")
breakdown && (status = "Breakdown ⟨uₖ₊₁,vₖ₊₁⟩ = 0")
solved_lq && (status = "solution xᴸ good enough given atol and rtol")
solved_cg && (status = "solution xᶜ good enough given atol and rtol")
user_requested_exit && (status = "user-requested exit")
# Update x
warm_start && @kaxpy!(n, one(FC), Δx, x)
solver.warm_start = false
# Update stats
stats.niter = iter
stats.solved = solved_lq || solved_cg
stats.inconsistent = false
stats.status = status
return solver
end