forked from ZixuanKe/Ch2r_ood_understanding
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcnn.py
423 lines (310 loc) · 15.4 KB
/
cnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#coding: utf-8
import pandas as pd
from sklearn.feature_extraction.text import CountVectorizer,TfidfVectorizer
import pandas as pd
import yaml
from keras.utils import np_utils, generic_utils
import pickle
from keras.models import Sequential, Model
from keras.layers import Embedding, Convolution2D, Input, Activation, MaxPooling2D, Reshape, Dropout, Dense, \
Flatten, Merge
from keras.optimizers import SGD
from keras.models import model_from_json
from sklearn.preprocessing import OneHotEncoder
import numpy as np;
np.random.seed(1337) # for reproducibility
import random
#
# config = yaml.load(file('config_my_cnn.yaml')) #读取yaml配置文件
# config = config['OriginBow'] #以字典的方式读取2
'''
cnn 结构可以随时更改
目前是 一个随机选取方案 的结果
'''
nb_pool = [2,1]
nb_classes = 24
def onehotcoder(train_data,test_data):
'''
对应论文中的 seg编码
:param train_data: 训练数据
:param test_data: 测试数据
:return:
'''
vect = CountVectorizer()
train_data_bow_fea = vect.fit_transform(train_data['WORDS']).toarray()
# 规定4维输入,必须先转化[长度,1,宽度,1]
test_data_bow_fea = vect.transform(test_data['WORDS']).toarray()
length = len(vect.vocabulary_)
values = []
for i in range(10):
values.append(length)
print len(values)
code = OneHotEncoder(categorical_features=np.array([1,2,3,4,5,6,7,8,9,10]),n_values=values) #10个类别 每个类别有字典总数种可能
train_feature = code.fit_transform(train_data_bow_fea).toarray() #编码
test_feature = code.transform(test_data_bow_fea).toarray()
# print "训练集:"
# print "每个词的维度:",code.n_values_
train_onehot = []
# print "单词总数:",len(train_feature)
# print "每行总长度", len(train_feature[1]) * 935 - 1
for i in range(len(train_feature)):
train_one_hot_col = []
t = 0
while True:
# print "剩下 " + str( (len( train_feature[i])) - t ) + " 维"
if ((len( train_feature[i])) - t) < 0:
break
a = train_feature[i][t:t+935]
t += 935
b = train_feature[i][t:t+935]
c = [a[m]+b[m] for m in range(min(len(a),len(b)))] #2区域内相加
for k in c:
train_one_hot_col.append(k)
train_onehot.append(train_one_hot_col)
print "最终维度:",len(train_onehot[0])
# print "测试集:"
# print "每个词的维度:",code.n_values_
test_onehot = []
# print "单词总数:",len(test_feature)
# print "每行总长度", len(test_feature[1]) * 935 - 1
for i in range(len(test_feature)):
test_one_hot_col = []
t = 0
while True:
# print "剩下 " + str( (len( test_feature[i])) - t ) + " 维"
if ((len( test_feature[i])) - t) < 0:
break
a = test_feature[i][t:t+935]
t += 935
b = test_feature[i][t:t+935]
c = [a[m]+b[m] for m in range(min(len(a),len(b)))] #2区域内相加
for k in c:
test_one_hot_col.append(k)
test_onehot.append(test_one_hot_col)
print "最终维度:",len(test_onehot[0])
print len(test_onehot)
return train_onehot,test_onehot
def build(layer1,layer2,hidden1,hidden2,length,width,lr=0.001 ,decay=1e-6,momentum=0.9):
'''
开始构建CNN网络
:param layer1: 第一层网络 卷积核数量
:param layer2: 第二层网络 卷积核数量
:param hidden1: 第一个隐藏层网络 卷积核数量
:param hidden2: 第二个隐藏层网络 卷积核数量
:param length: 输入长度
:param width: 输入宽度
:param lr: 学习率
:param decay: 学习率衰减
:param momentum:
:return: 搭建好的CNN模型
'''
#16*5*1
layer1_model1=Sequential()
layer1_model1.add(Convolution2D(layer1, 2, 1,
border_mode='valid',
input_shape=(1, length, 1)))
layer1_model1.add(Activation('tanh'))
layer1_model1.add(MaxPooling2D(pool_size=(nb_pool[0], nb_pool[1])))
#16*10*1
layer1_model2=Sequential()
layer1_model2.add(Convolution2D(layer1, 4, 1,
border_mode='valid',
input_shape=(1, length, 1)))
layer1_model2.add(Activation('tanh'))
layer1_model2.add(MaxPooling2D(pool_size=(nb_pool[0], nb_pool[1])))
#16*20*1
layer1_model3=Sequential()
layer1_model3.add(Convolution2D(layer1, 6, 1,
border_mode='valid',
input_shape=(1, length, 1)))
layer1_model3.add(Activation('tanh'))
layer1_model3.add(MaxPooling2D(pool_size=(nb_pool[0], nb_pool[1])))
model = Sequential()
model.add(Merge([layer1_model2,layer1_model1,layer1_model3], mode='concat',concat_axis=2))#merge
model.add(Convolution2D(layer2,3,1))#layer2 32*5*1
model.add(Activation('tanh'))
model.add(MaxPooling2D(pool_size=(nb_pool[0], nb_pool[1])))
model.add(Dropout(0.25))
model.add(Flatten()) #平铺
model.add(Dense(hidden1)) #Full connection 1: 1000
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(hidden2)) #Full connection 2: 200
model.add(Activation('tanh'))
model.add(Dropout(0.5))
model.add(Dense(nb_classes))
model.add(Activation('softmax'))
sgd = SGD(lr=lr, decay=decay, momentum=momentum, nesterov=True)
model.compile(loss='categorical_crossentropy', optimizer=sgd,metrics=["accuracy"])
#初始化应该在return 之前
return model
#
def load_data(file_name):
import csv
csvfile = file(file_name, 'rb')
reader = csv.reader(csvfile)
label = []
data = []
for line in reader:
label.append(line[0])
data.append(line[1:len(line)])
# print label
# print data
csvfile.close()
return data,label
if __name__ == '__main__':
# 测试集"""
train_data_bow_fea,train_data_label = load_data("v2.3_train_Sa_word_seg_i1_dev_830.csv")
test_data_bow_fea,test_data_label = load_data("v2.3_train_Sa_word_seg_i1_val_76.csv")
train_data_bow_fea_v1,train_data_label_v1 = load_data("v2.3_train_Sa_word_seg_i2_dev_555.csv")
test_data_bow_fea_v1,test_data_label_v1 = load_data("v2.3_train_Sa_word_seg_i2_val_275.csv")
# #
train_data_bow_fea_v2,train_data_label_v2 = load_data("v2.3_train_Sa_word_seg_i3_dev_553.csv")
test_data_bow_fea_v2,test_data_label_v2 = load_data("v2.3_train_Sa_word_seg_i3_val_277.csv")
train_data_bow_fea_v3,train_data_label_v3 = load_data("v2.3_train_Sa_word_seg_i4_dev_552.csv")
test_data_bow_fea_v3,test_data_label_v3 = load_data("v2.3_train_Sa_word_seg_i4_val_278.csv")
sentence_width = len(train_data_bow_fea)
sentence_length = len(train_data_bow_fea[1])
sentence_width_v1 = len(train_data_bow_fea_v1)
sentence_length_v1 = len(train_data_bow_fea_v1[1])
sentence_width_v2 = len(train_data_bow_fea_v2)
sentence_length_v2 = len(train_data_bow_fea_v2[1])
sentence_width_v3 = len(train_data_bow_fea_v3)
sentence_length_v3 = len(train_data_bow_fea_v3[1])
print sentence_width
print sentence_length
train_data_bow_fea = np.array(train_data_bow_fea).reshape(len(train_data_bow_fea), 1, len(train_data_bow_fea[1]), 1)
# 规定4维输入,必须先转化[长度,1,宽度,1]
test_data_bow_fea = np.array(test_data_bow_fea).reshape(len(test_data_bow_fea), 1, len(test_data_bow_fea[1]), 1)
train_data_bow_fea_v1 = np.array(train_data_bow_fea_v1).reshape(len(train_data_bow_fea_v1), 1, len(train_data_bow_fea_v1[1]), 1)
# 规定4维输入,必须先转化[长度,1,宽度,1]
test_data_bow_fea_v1 = np.array(test_data_bow_fea_v1).reshape(len(test_data_bow_fea_v1), 1, len(test_data_bow_fea_v1[1]), 1)
train_data_bow_fea_v2 = np.array(train_data_bow_fea_v2).reshape(len(train_data_bow_fea_v2), 1, len(train_data_bow_fea_v2[1]), 1)
# 规定4维输入,必须先转化[长度,1,宽度,1]
test_data_bow_fea_v2 = np.array(test_data_bow_fea_v2).reshape(len(test_data_bow_fea_v2), 1, len(test_data_bow_fea_v2[1]), 1)
train_data_bow_fea_v3 = np.array(train_data_bow_fea_v3).reshape(len(train_data_bow_fea_v3), 1, len(train_data_bow_fea_v3[1]), 1)
# 规定4维输入,必须先转化[长度,1,宽度,1]
test_data_bow_fea_v3 = np.array(test_data_bow_fea_v3).reshape(len(test_data_bow_fea_v3), 1, len(test_data_bow_fea_v3[1]), 1)
#改造: 维度也卷积
#改造: 参数改变等
print '句子数:',sentence_width
print '维度总数:',sentence_length
label_train = train_data_label
label_train = np_utils.to_categorical(label_train, 24) # 必须使用固定格式表示标签
label_test = test_data_label
label_test = np_utils.to_categorical(label_test, 24) # 必须使用固定格式表示标签
label_train_v1 = train_data_label_v1
label_train_v1 = np_utils.to_categorical(label_train_v1, 24) # 必须使用固定格式表示标签
label_test_v1 = test_data_label_v1
label_test_v1 = np_utils.to_categorical(label_test_v1, 24) # 必须使用固定格式表示标签
label_train_v2 = train_data_label_v2
label_train_v2 = np_utils.to_categorical(label_train_v2, 24) # 必须使用固定格式表示标签
label_test_v2 = test_data_label_v2
label_test_v2 = np_utils.to_categorical(label_test_v2, 24) # 必须使用固定格式表示标签
label_train_v3 = train_data_label_v3
label_train_v3 = np_utils.to_categorical(label_train_v3, 24) # 必须使用固定格式表示标签
label_test_v3 = test_data_label_v3
label_test_v3 = np_utils.to_categorical(label_test_v3, 24) # 必须使用固定格式表示标签
# layer1_model1 = [10,9,11]
# layer2_model = [30,31,29]
# hidden1_model = [1000,980,1020]
# hidden2_model = [100,80,120]
#
# c = 5
# layer1_model1 = [5, 6, 4]
# layer2_model = [30, 31, 29]
# hidden1_model = [1000, 980, 1020]
# hidden2_model = [450, 430, 470]
#
# c = 4
# layer1_model1 = [10, 11, 9]
# layer2_model = [30, 31, 29]
# hidden1_model = [1000, 980, 1020]
# hidden2_model = [450, 430, 470]
#
# c = 3
# layer1_model1 = [10, 11, 9]
# layer2_model = [15, 14, 16]
# hidden1_model = [1000, 980, 1020]
# hidden2_model = [300, 280, 320]
#
# c = 2
layer1_model1 = [10, 11, 9]
layer2_model = [30,31, 29]
hidden1_model = [1000, 980, 1020]
hidden2_model = [300, 280, 320]
c = 1
print c
plan = []
for i in range(0, len( layer1_model1)):
for j in range(0, len( layer2_model)):
for k in range(0, len( layer2_model)):
for m in range(0, len( layer2_model)):
plan.append([layer1_model1[i],layer2_model[j],hidden1_model[k],hidden2_model[m]])
random.shuffle(plan)
u = 0
# for layer1 in layer1_model1: #4,6
# for layer2 in layer2_model: #[6,8]
# for hidden1 in hidden1_model:
# for hidden2 in hidden2_model:
for i in range(20):
layer1 = plan[i][0]
layer2 = plan[i][1]
hidden1 = plan[i][2]
hidden2 = plan[i][3]
f = open('result.txt','a')
print 'layer1: ', layer1
print 'layer2: ', layer2
print 'hidden1: ', hidden1
print 'hidden2: ', hidden2
print >> f, 'layer1: ', layer1
print >> f,'layer2: ', layer2
print >> f,'hidden1: ', hidden1
print >> f,'hidden2: ', hidden2
#不同卷积核意味着不同权值
model = build( layer1,layer2,hidden1,hidden2,sentence_length,sentence_width)
model.fit([train_data_bow_fea,train_data_bow_fea,train_data_bow_fea],label_train, batch_size=32, nb_epoch=30,shuffle=True,verbose=1,validation_split=0)
print '测试准确率:'
print model.metrics_names
print model.evaluate([test_data_bow_fea,test_data_bow_fea,test_data_bow_fea],label_test,show_accuracy=True)
print >> f,'测试准确率:'
print >> f,model.metrics_names
print >> f,model.evaluate([test_data_bow_fea, test_data_bow_fea, test_data_bow_fea], label_test, show_accuracy=True)
acc = model.evaluate([test_data_bow_fea,test_data_bow_fea,test_data_bow_fea],label_test,show_accuracy=True)[1]
#v1
model = build( layer1,layer2,hidden1,hidden2,sentence_length_v1,sentence_width_v1)
model.fit([train_data_bow_fea_v1,train_data_bow_fea_v1,train_data_bow_fea_v1],label_train_v1, batch_size=32, nb_epoch=30,shuffle=True,verbose=1,validation_split=0)
acc_v1 = model.evaluate([test_data_bow_fea_v1,test_data_bow_fea_v1,test_data_bow_fea_v1],label_test_v1,show_accuracy=True)[1]
#v2
model = build( layer1,layer2,hidden1,hidden2,sentence_length_v2,sentence_length_v2)
model.fit([train_data_bow_fea_v2,train_data_bow_fea_v2,train_data_bow_fea_v2],label_train_v2, batch_size=32, nb_epoch=30,shuffle=True,verbose=1,validation_split=0)
acc_v2 = model.evaluate([test_data_bow_fea_v2,test_data_bow_fea_v2,test_data_bow_fea_v2],label_test_v2,show_accuracy=True)[1]
#v3
model = build( layer1,layer2,hidden1,hidden2,sentence_length_v3,sentence_length_v3)
model.fit([train_data_bow_fea_v3,train_data_bow_fea_v3,train_data_bow_fea_v3],label_train_v3, batch_size=32, nb_epoch=30,shuffle=True,verbose=1,validation_split=0)
acc_v3 = model.evaluate([test_data_bow_fea_v3,test_data_bow_fea_v3,test_data_bow_fea_v3],label_test_v3,show_accuracy=True)[1]
import csv
csvfile = file('result_word&charact_Best' + str(c) + '_Random.csv', 'a')
writer = csv.writer(csvfile)
if u == 0:
writer.writerow(['layer1', 'layer2', 'hidden1','hidden2','val_acc','test_acc'])
u += 1
data = [
(layer1, layer2, hidden1,hidden2,acc,((acc_v1 + acc_v2 + acc_v3)/(3*1.0)) )
]
writer.writerows(data)
csvfile.close()
# import csv
#
# csvfile = file('result_word.csv', 'a')
# writer = csv.writer(csvfile)
# if u == 0:
# writer.writerow(['layer1', 'layer2', 'hidden1','hidden2','val_acc','test_acc'])
# u += 1
#
# data = [
# (layer1, layer2, hidden1,hidden2,"",model.evaluate([test_data_bow_fea,test_data_bow_fea,test_data_bow_fea],label_test,show_accuracy=True)[1]),
# ]
# writer.writerows(data)
# csvfile.close()
f.close()