-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path03_User_Defined_Functions.R
167 lines (139 loc) · 4.08 KB
/
03_User_Defined_Functions.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
library(arrow)
library(dplyr)
library(stringr)
library(tictoc)
nyc_taxi <- open_dataset("data/nyc-taxi")
time_diff_minutes <- function(dropoff, pickup) {
difftime(dropoff, pickup, units = "mins") |>
round() |>
as.integer()
}
nyc_taxi |>
mutate(duration_minutes = time_diff_minutes(dropoff_datetime, pickup_datetime)) |>
select(pickup_datetime, dropoff_datetime, duration_minutes) |>
head() |>
collect()
register_scalar_function(
name = "time_diff_minutes",
# Note: the first argument must always be context
function(context, dropoff, pickup) {
difftime(dropoff, pickup, units = "mins") |>
round() |>
as.integer()
},
in_type = schema(
pickup = timestamp(unit = "ms"),
dropoff = timestamp(unit = "ms")
),
out_type = int32(),
auto_convert = T
)
nyc_taxi |>
mutate(duration_minutes = time_diff_minutes(dropoff_datetime, pickup_datetime)) |>
select(pickup_datetime, dropoff_datetime, duration_minutes) |>
head() |>
collect()
# Now, try a user-defined function to wrap str_replace_na
nyc_taxi |>
distinct(vendor_name) |>
collect()
replace_arrow_nas <- function(x, replacement) {
stringr::str_replace_na(x, replacement)
}
register_scalar_function(
name = "replace_arrow_nas",
# Note: the first argument must always be context
function(context, x, replacement) {
stringr::str_replace_na(x, replacement)
},
in_type = schema(
x = string(),
replacement = string()
),
out_type = string(),
auto_convert = T
)
nyc_taxi |>
filter(is.na(vendor_name)) |>
mutate(vendor_name = replace_arrow_nas(vendor_name, "No vendor")) |>
distinct(vendor_name) |>
head() |>
collect()
# Joining a reference table
vendors <- tibble::tibble(
code = c("VTS", "CMT", "DDS"),
full_name = c(
"Verifone Transportation Systems",
"Creative Mobile Technologies",
"Digital Dispatch Systems"
)
)
# Joining
nyc_taxi |>
left_join(vendors, by = c("vendor_name" = "code")) |>
select(vendor_name, full_name, pickup_datetime) |>
head(3) |>
collect()
# Now try another example of joining and troubleshoot the complexities
nyc_taxi_zones <-
read_csv_arrow(here::here("data/taxi_zone_lookup.csv")) |>
select(location_id = LocationID,
borough = Borough)
# Troubleshoot Joining Complexities ---------------------------------------
nyc_taxi_zones
nyc_taxi |>
left_join(nyc_taxi_zones, by = c("pickup_location_id" = "location_id")) |>
collect()
arrow::schema(nyc_taxi)
nyc_taxi_zones_arrow <- arrow_table(nyc_taxi_zones)
# Review schema of the taxi zones
schema(nyc_taxi_zones_arrow)
# Change the schema types
nyc_taxi_zones_arrow <- arrow_table(
nyc_taxi_zones,
schema = schema(location_id = int64(), borough = utf8())
)
# Prepare the auxiliary tables
pickup <- nyc_taxi_zones_arrow |>
select(pickup_location_id = location_id,
pickup_borough = borough)
dropoff <- nyc_taxi_zones_arrow |>
select(dropoff_location_id = location_id,
dropoff_borough = borough)
# Join and cross-tabulate
### Note: 2-3 minutes to join twice and cross-tabulate on non-partition
### variables, with 1.15 billion rows of data 🙂
tic()
borough_counts <- nyc_taxi |>
left_join(pickup) |>
left_join(dropoff) |>
count(pickup_borough, dropoff_borough) |>
arrange(desc(n)) |>
collect()
toc()
View(borough_counts)
# Exercise
### How many taxi pickups were recorded in 2019 from the three major airports
### covered by the NYC Taxis data set (JFK, LaGuardia, Newark)? Hint: you can
### use stringr::str_detect() to help you find pickup zones with the word
### “Airport” in them.
pickup_location <- read_csv_arrow(here::here("data/taxi_zone_lookup.csv"))
pickup_location <- pickup_location |>
select(
pickup_location_id = LocationID,
borough = Borough,
pickup_zone = Zone
)
pickup_location_arrow <- arrow_table(
pickup_location,
schema = schema(
pickup_location_id = int64(),
borough = utf8(),
pickup_zone = utf8()
))
nyc_taxi |>
filter(year == 2019) |>
left_join(pickup_location_arrow) |>
filter(str_detect(pickup_zone, "Airport")) |>
count(pickup_zone) |>
collect()