-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmusic_model.py
87 lines (66 loc) · 2.66 KB
/
music_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
from keras import Sequential
from keras.layers import TimeDistributed, Convolution1D, MaxPooling1D, Dropout, Flatten, BatchNormalization, LSTM, \
Bidirectional, Dense
def music_model(frame_size, feature_count, channels):
model = Sequential()
model.add(Dense(32, activation='relu', input_dim=24))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.25))
model.add(Dense(128, activation='relu'))
model.add((Dropout(0.25)))
model.add(Dense(64, activation='relu'))
model.add(Dense(32, activation='relu'))
model.add(Dropout(0.2))
model.add(Dense(16, activation='sigmoid'))
# # Add x3 Convolutional Layers
# model.add(Convolution1D(32, 3, activation='relu', input_shape=(frame_size, feature_count)))
# model.add(Convolution1D(32, 3, activation='relu'))
# model.add(MaxPooling1D(2, 2))
#
# model.add(Dropout(0.25))
#
# # Add x3 Convolutional Layers (Total 6)
# model.add(Convolution1D(64, 3, activation='relu'))
# model.add(Convolution1D(64, 3, activation='relu'))
# model.add(MaxPooling1D(2, 2))
#
# model.add(Dropout(0.25))
#
# # Add x3 Convolutional Layers (Total 9)
# model.add(Convolution1D(64, 3, activation='relu'))
# model.add(Convolution1D(64, 3, activation='relu'))
# model.add(MaxPooling1D(2, 2))
#
# model.add(Dropout(0.25))
#
# model.add(Flatten())
# model.add(BatchNormalization())
#
# # Add x2 Reccurrent Layers
# model.add(LSTM(64, return_sequences=True))
# model.add(LSTM(64, return_sequences=True))
#
# model.add(Dropout(0.25))
# # model.add(Flatten())
# model.add(Dense(12, activation='sigmoid'))
# Add x3 Convolutional Layers
model.add(TimeDistributed(Convolution1D(32, 3, activation='relu'), input_shape=(frame_size, feature_count, channels)))
model.add(TimeDistributed(Convolution1D(32, 3, activation='relu')))
model.add(TimeDistributed(MaxPooling1D(2, 2)))
model.add(Dropout(0.25))
# Add x3 Convolutional Layers (Total 6)
model.add(TimeDistributed(Convolution1D(64, 3, activation='relu')))
model.add(TimeDistributed(Convolution1D(64, 3, activation='relu')))
model.add(TimeDistributed(MaxPooling1D(2, 2)))
model.add(Dropout(0.25))
model.add(TimeDistributed(Flatten()))
model.add(BatchNormalization())
# Add x2 Reccurrent Layers
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Bidirectional(LSTM(128, return_sequences=True)))
model.add(Dropout(0.25))
#model.add(Flatten())
model.add(TimeDistributed(Dense(12, activation='sigmoid')))
return model