-
Notifications
You must be signed in to change notification settings - Fork 57
/
Copy pathweb_demo_internlm.py
169 lines (141 loc) · 5.57 KB
/
web_demo_internlm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
"""
Directly load models in internlm format for interactive dialogue.
"""
import logging
import streamlit as st
from sentencepiece import SentencePieceProcessor
from internlm.accelerator import get_accelerator
from tools.interface import GenerationConfig
from tools.load_internlm2_model import (
initialize_internlm_model,
internlm_interactive_generation,
)
logger = logging.getLogger(__file__)
internlm_accelerator = get_accelerator()
MODEL_CONFIG_MAP = {
"internlm-chat-7b": dict(
checkpoint=False,
num_attention_heads=32,
embed_split_hidden=True,
vocab_size=103168,
embed_grad_scale=1,
parallel_output=False,
hidden_size=4096,
num_layers=32,
mlp_ratio=8 / 3,
apply_post_layer_norm=False,
dtype="torch.bfloat16",
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1,
use_dynamic_ntk_rope=True,
),
"internlm-chat-7b-v1.1": dict(
checkpoint=False,
num_attention_heads=32,
embed_split_hidden=True,
vocab_size=103168,
embed_grad_scale=1,
parallel_output=False,
hidden_size=4096,
num_layers=32,
mlp_ratio=8 / 3,
apply_post_layer_norm=False,
dtype="torch.bfloat16",
norm_type="rmsnorm",
layer_norm_epsilon=1e-5,
use_flash_attn=True,
num_chunks=1,
use_dynamic_ntk_rope=True,
),
}
def on_btn_click():
del st.session_state.messages
@st.cache_resource
def load_model():
model = initialize_internlm_model(
model_type="INTERNLM",
ckpt_dir="[Please replace this with the directory where the internlm model weights are stored]",
# Please change the model here to other models supported by internlm according to your own usage needs.
model_config=MODEL_CONFIG_MAP["internlm-chat-7b-v1.1"],
del_model_prefix=True,
)
tokenizer = SentencePieceProcessor("tools/tokenizer_internlm.model") # pylint: disable=E1121
return model, tokenizer
def prepare_generation_config():
with st.sidebar:
max_length = st.slider("Max Length", min_value=32, max_value=16000, value=8000)
top_p = st.slider("Top P", 0.0, 1.0, 0.8, step=0.01)
temperature = st.slider("Temperature", 0.0, 1.0, 0.7, step=0.01)
st.button("Clear Chat History", on_click=on_btn_click)
generation_config = GenerationConfig(max_length=max_length, top_p=top_p, temperature=temperature)
return generation_config
system_meta_instruction = (
"""<|System|>:You are an AI assistant whose name is InternLM (书生·浦语).
- InternLM (书生·浦语) is a conversational language model that is developed by Shanghai AI Laboratory (上海人工智能实验室). """
+ """It is designed to be helpful, honest, and harmless.
- InternLM (书生·浦语) can understand and communicate fluently in the language chosen by the user such as English and 中文.
"""
)
user_prompt = "<|User|>:{user}\n"
robot_prompt = "<|Bot|>:{robot}<eoa>\n"
cur_query_prompt = "<|User|>:{user}\n<|Bot|>:"
def combine_history(prompt):
messages = st.session_state.messages
total_prompt = ""
for message in messages:
cur_content = message["content"]
if message["role"] == "user":
cur_prompt = user_prompt.replace("{user}", cur_content)
elif message["role"] == "robot":
cur_prompt = robot_prompt.replace("{robot}", cur_content)
else:
raise RuntimeError
total_prompt += cur_prompt
total_prompt = system_meta_instruction + total_prompt + cur_query_prompt.replace("{user}", prompt)
print(total_prompt)
return total_prompt
def main():
# internlm_accelerator.empty_cache()
print("load model begin.")
model, tokenizer = load_model()
print("load model end.")
user_avator = "doc/imgs/user.png"
robot_avator = "doc/imgs/robot.png"
st.title("InternLM-Chat-7B")
generation_config = prepare_generation_config()
# Initialize chat history
if "messages" not in st.session_state:
st.session_state.messages = []
# Display chat messages from history on app rerun
for message in st.session_state.messages:
with st.chat_message(message["role"], avatar=message.get("avatar")):
st.markdown(message["content"])
# Accept user input
if prompt := st.chat_input("What is up?"):
# Display user message in chat message container
with st.chat_message("user", avatar=user_avator):
st.markdown(prompt)
real_prompt = combine_history(prompt)
# Add user message to chat history
st.session_state.messages.append({"role": "user", "content": prompt, "avatar": user_avator})
with st.chat_message("robot", avatar=robot_avator):
message_placeholder = st.empty()
for cur_response in internlm_interactive_generation(
model=model,
tokenizer=tokenizer,
prompt=real_prompt,
generation_config=generation_config,
additional_eos_token_list=[103028],
):
# Display robot response in chat message container
message_placeholder.markdown(cur_response + "▌")
message_placeholder.markdown(cur_response) # pylint: disable=W0631
# Add robot response to chat history
st.session_state.messages.append(
{"role": "robot", "content": cur_response, "avatar": robot_avator} # pylint: disable=W0631
)
internlm_accelerator.empty_cache()
if __name__ == "__main__":
main()