forked from recommenders-team/recommenders
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathspark_diversity_evaluation.py
375 lines (332 loc) · 15.2 KB
/
spark_diversity_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
from pyspark.sql.types import *
from pyspark.sql import functions as F
from reco_utils.common.constants import (
DEFAULT_USER_COL,
DEFAULT_ITEM_COL,
)
class DiversityEvaluation:
"""Spark Diversity Evaluator"""
def __init__(
self,
train_df,
reco_df,
col_user=DEFAULT_USER_COL,
col_item=DEFAULT_ITEM_COL,
col_relevance=None,
):
"""Initializer.
This is the Spark version of diversity metrics evaluator.
The methods of this class calculate following diversity metrics:
Coverage - The proportion of items that can be recommended. It includes two metrics: (1) catalog_coverage, which measures the proportion of items that get recommended from the item catalog; (2) distributional_coverage, which measures how unequally different items are recommended in the recommendations to all users.
Novelty - A more novel item indicates it is less popular, i.e., it gets recommended less frequently.
Diversity - The dissimilarity of items being recommended.
Serendipity - The "unusualness" or "surprise" of recommendations to a user. When 'col_relevance' is used, it indicates how "pleasant surprise" of recommendations is to a user.
Info:
The metric definitions/formulations are based on following reference with modification:
- G. Shani and A. Gunawardana, Evaluating Recommendation Systems, Recommender Systems Handbook pp. 257-297, 2010.
- Y.C. Zhang, D.Ó. Séaghdha, D. Quercia and T. Jambor, Auralist: introducing serendipity into music recommendation, WSDM 2012
- P. Castells, S. Vargas, and J. Wang, Novelty and diversity metrics for recommender systems: choice, discovery and relevance, ECIR 2011
- Eugene Yan, Serendipity: Accuracy’s unpopular best friend in Recommender Systems, towards data science, April 2020
- N. Hurley and M. Zhang, Novelty and diversity in top-n recommendation--analysis and evaluation, ACM Transactions, 2011
Args:
train_df (pySpark DataFrame): Training set used for the recommender,
containing col_user, col_item.
reco_df (pySpark DataFrame): Recommender's prediction output,
containing col_user, col_item, col_relevance (optional).
col_user (str): User id column name.
col_item (str): Item id column name.
col_relevance (str): This column indicates whether the recommended item is actually relevant to the user or not.
"""
self.train_df = train_df.select(col_user, col_item)
self.col_user = col_user
self.col_item = col_item
self.sim_col = "sim"
self.df_cosine_similariy = None
self.df_user_item_serendipity = None
self.df_user_serendipity = None
self.df_serendipity = None
self.df_item_novelty = None
self.df_user_novelty = None
self.df_novelty = None
self.df_intralist_similarity = None
self.df_user_diversity = None
self.df_diversity = None
if col_relevance is None:
self.col_relevance = "relevance"
# relevance term, default is 1 (relevent) for all
self.reco_df = reco_df.select(
col_user, col_item, F.lit(1.0).alias(self.col_relevance)
)
else:
self.col_relevance = col_relevance
self.reco_df = reco_df.select(
col_user, col_item, F.col(self.col_relevance).cast(DoubleType())
)
# check if reco_df contain any user_item pairs that are already shown train_df
count_intersection = (
self.train_df.select(self.col_user, self.col_item)
.intersect(self.reco_df.select(self.col_user, self.col_item))
.count()
)
if count_intersection != 0:
raise Exception(
"reco_df should not contain any user_item pairs that are already shown train_df"
)
def _get_all_user_item_pairs(self, df):
return (
df.select(self.col_user)
.distinct()
.join(df.select(self.col_item).distinct())
)
def _get_pairwise_items(self, df):
return (
df.select(self.col_user, F.col(self.col_item).alias("i1"))
# get pairwise combinations of items per user (ignoring duplicate pairs [1,2] == [2,1])
.join(
df.select(
F.col(self.col_user).alias("_user"),
F.col(self.col_item).alias("i2"),
),
(F.col(self.col_user) == F.col("_user")) & (F.col("i1") <= F.col("i2")),
).select(self.col_user, "i1", "i2")
)
def _get_cosine_similarity(self, n_partitions=200):
if self.df_cosine_similariy is None:
pairs = self._get_pairwise_items(df=self.train_df)
item_count = self.train_df.groupBy(self.col_item).count()
self.df_cosine_similariy = (
pairs.groupBy("i1", "i2")
.count()
.join(
item_count.select(
F.col(self.col_item).alias("i1"),
F.pow(F.col("count"), 0.5).alias("i1_sqrt_count"),
),
on="i1",
)
.join(
item_count.select(
F.col(self.col_item).alias("i2"),
F.pow(F.col("count"), 0.5).alias("i2_sqrt_count"),
),
on="i2",
)
.select(
"i1",
"i2",
(
F.col("count")
/ (F.col("i1_sqrt_count") * F.col("i2_sqrt_count"))
).alias("sim"),
)
.repartition(n_partitions, "i1", "i2")
.sortWithinPartitions("i1", "i2")
)
return self.df_cosine_similariy
# diversity metrics
def _get_intralist_similarity(self, df):
if self.df_intralist_similarity is None:
pairs = self._get_pairwise_items(df=df)
similarity_df = self._get_cosine_similarity().orderBy("i1", "i2")
self.df_intralist_similarity = (
pairs.join(similarity_df, on=["i1", "i2"], how="left")
.fillna(
0
) # Fillna(0) is needed in the cases where similarity_df does not have an entry for a pair of items. e.g. i1 and i2 have never occurred together.
.filter(F.col("i1") != F.col("i2"))
.groupBy(self.col_user)
.agg(F.mean(self.sim_col).alias("avg_il_sim"))
.select(self.col_user, "avg_il_sim")
)
return self.df_intralist_similarity
def user_diversity(self):
"""Calculate average diversity for recommendations for each user.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: col_user, user_diversity.
"""
if self.df_user_diversity is None:
self.df_intralist_similarity = self._get_intralist_similarity(self.reco_df)
self.df_user_diversity = (
self.df_intralist_similarity.withColumn(
"user_diversity", 1 - F.col("avg_il_sim")
)
.select(self.col_user, "user_diversity")
.orderBy(self.col_user)
)
return self.df_user_diversity
def diversity(self):
"""Calculate average diversity for recommendations across all users.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: diversity.
"""
if self.df_diversity is None:
self.df_user_diversity = self.user_diversity()
self.df_diversity = self.df_user_diversity.select(
F.mean("user_diversity").alias("diversity")
)
return self.df_diversity
# novelty metrics
def item_novelty(self):
"""Calculate novelty for each item in the recommendations.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: col_item, item_novelty.
"""
if self.df_item_novelty is None:
train_pairs = self._get_all_user_item_pairs(df=self.train_df)
self.df_item_novelty = (
train_pairs.join(
self.train_df.withColumn("seen", F.lit(1)),
on=[self.col_user, self.col_item],
how="left",
)
.filter(F.col("seen").isNull())
.groupBy(self.col_item)
.count()
.join(
self.reco_df.groupBy(self.col_item).agg(
F.count(self.col_user).alias("reco_count")
),
on=self.col_item,
)
.withColumn(
"item_novelty", -F.log2(F.col("reco_count") / F.col("count"))
)
.select(self.col_item, "item_novelty")
.orderBy(self.col_item)
)
return self.df_item_novelty
def user_novelty(self):
"""Calculate average item novelty for each user's recommendations.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: col_user, user_novelty.
"""
if self.df_user_novelty is None:
self.df_item_novelty = self.item_novelty()
self.df_user_novelty = (
self.reco_df.join(self.df_item_novelty, on=self.col_item)
.groupBy(self.col_user)
.agg(F.mean("item_novelty").alias("user_novelty"))
.orderBy(self.col_user)
)
return self.df_user_novelty
def novelty(self):
"""Calculate average novelty for recommendations across all users.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: novelty.
"""
if self.df_novelty is None:
self.df_user_novelty = self.user_novelty()
self.df_novelty = self.df_user_novelty.agg(
F.mean("user_novelty").alias("novelty")
)
return self.df_novelty
# serendipity metrics
def user_item_serendipity(self):
"""Calculate serendipity of each item in the recommendations for each user.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: col_user, col_item, user_item_serendipity.
"""
# for every col_user, col_item in reco_df, join all interacted items from train_df.
# These interacted items are repeated for each item in reco_df for a specific user.
if self.df_user_item_serendipity is None:
self.df_cosine_similariy = self._get_cosine_similarity().orderBy("i1", "i2")
self.df_user_item_serendipity = (
self.reco_df.select(
self.col_user,
self.col_item,
F.col(self.col_item).alias(
"reco_item_tmp"
), # duplicate col_item to keep
)
.join(
self.train_df.select(
self.col_user, F.col(self.col_item).alias("train_item_tmp")
),
on=[self.col_user],
)
.select(
self.col_user,
self.col_item,
F.least(F.col("reco_item_tmp"), F.col("train_item_tmp")).alias(
"i1"
),
F.greatest(F.col("reco_item_tmp"), F.col("train_item_tmp")).alias(
"i2"
),
)
.join(self.df_cosine_similariy, on=["i1", "i2"], how="left")
.fillna(0)
.groupBy(self.col_user, self.col_item)
.agg(F.mean(self.sim_col).alias("avg_item2interactedHistory_sim"))
.join(self.reco_df, on=[self.col_user, self.col_item])
.withColumn(
"user_item_serendipity",
(1 - F.col("avg_item2interactedHistory_sim"))
* F.col(self.col_relevance),
)
.select(self.col_user, self.col_item, "user_item_serendipity")
.orderBy(self.col_user, self.col_item)
)
return self.df_user_item_serendipity
def user_serendipity(self):
"""Calculate average serendipity for each user's recommendations.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: col_user, user_serendipity.
"""
if self.df_user_serendipity is None:
self.df_user_item_serendipity = self.user_item_serendipity()
self.df_user_serendipity = (
self.df_user_item_serendipity.groupBy(self.col_user)
.agg(F.mean("user_item_serendipity").alias("user_serendipity"))
.orderBy(self.col_user)
)
return self.df_user_serendipity
def serendipity(self):
"""Calculate average serentipity for recommendations across all users.
Returns:
pyspark.sql.dataframe.DataFrame: A dataframe with following columns: serendipity.
"""
if self.df_serendipity is None:
self.df_user_serendipity = self.user_serendipity()
self.df_serendipity = self.df_user_serendipity.agg(
F.mean("user_serendipity").alias("serendipity")
)
return self.df_serendipity
# coverage metrics
def catalog_coverage(self):
"""Calculate catalog coverage for recommendations across all users.
Returns:
float: catalog coverage
"""
# distinct item count in reco_df
count_distinct_item_reco = self.reco_df.select(self.col_item).distinct().count()
# distinct item count in train_df
count_distinct_item_train = (
self.train_df.select(self.col_item).distinct().count()
)
# cagalog coverage
c_coverage = count_distinct_item_reco / count_distinct_item_train
return c_coverage
def distributional_coverage(self):
"""Calculate distributional coverage for recommendations across all users.
Returns:
float: distributional coverage
"""
# In reco_df, how many times each col_item is being recommended
df_itemcnt_reco = self.reco_df.groupBy(self.col_item).count()
# distinct item count in train_df
count_distinct_item_train = (
self.train_df.select(self.col_item).distinct().count()
)
# the number of total recommendations
count_row_reco = self.reco_df.count()
df_entropy = df_itemcnt_reco.withColumn(
"p(i)", F.col("count") / count_row_reco
).withColumn("entropy(i)", F.col("p(i)") * F.log2(F.col("p(i)")))
# distributional coverage
d_coverage = (-2 / count_distinct_item_train) * df_entropy.agg(
F.sum("entropy(i)")
).collect()[0][0]
return d_coverage