-
Notifications
You must be signed in to change notification settings - Fork 4
/
complex_synapses.py
267 lines (217 loc) · 12.7 KB
/
complex_synapses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import math
import torch
from torch.optim.optimizer import Optimizer
def print_info(n_beakers, alpha, beta, adam=False):
'''Print information on the complex synapse algorithm with chosen settings to the screen.'''
print("Complex Synapse Optimizer...")
if n_beakers == 0:
print(" --> # of beakers: 0 (i.e., standard {} optimizer)".format("Adam" if adam else "SGD"))
else:
print(" --> # of beakers:{}{:6}".format(" " if n_beakers > 1 else "", n_beakers))
if n_beakers > 1:
print(" --> shortest time-scale: {:6}".format(int(alpha)))
print(" --> {}time-scale: {:7}".format("longest " if n_beakers > 1 else "", int(beta)))
class ComplexSynapse(Optimizer):
'''Implements the complex synapse algorithm (Benna & Fusi, 2016) as an SGD-based PyTorch-optimizer.
Args:
params (iterable): iterable of parameters (`synapses`) to optimize or iterable of dicts defining param groups
lr (float, optional): learning rate (default: 0.1)
n_beakers (int, optional): number of beakers (0 = standard; 1 = only decay at timescale ``beta``; default: 6)
alpha (float, optional): shortest synaptic timescale (timescale of 1st beaker = ``C_1/g_{1,2}``; default: 1)
beta (float, optional): longest synaptic timescale (timescale of last beaker = ``C_k/g_{k,k+1}``; default: 1024)
init (str, optional, `same`|`zero`): how should the beakers be initialized (default: `same`)
verbose (bool, optional): if ``True``, information about chosen settings is printed to screen
NOTES:
- the arguments `n_beakers`, `alpha` and `beta` cannot be set per parameter-group!
- if `n_beakers` is set to 0, this corresponds to standard SGD
- if `n_beakers` is set to 1, this corresponds to standard SGD with decay of ``1/beta``
'''
def __init__(self, params, lr=0.1, n_beakers=6, alpha=1., beta=1024.,
init='same', verbose=False):
# Check for invalid arguments
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not init in ('same', 'zero'):
raise ValueError("Invalid initialization code: {}".format(init))
# Deal with arguments set per parameter group
defaults = dict(lr=lr, init=init)
super(ComplexSynapse, self).__init__(params, defaults)
# Set the parameters of the beakers
self.n_beakers = n_beakers
self.alpha = alpha
self.beta = beta
self.x = (beta/alpha)**(1/(2*n_beakers-2)) if n_beakers>1 else beta
for id in range(1, n_beakers+1):
setattr(self, 'C{}'.format(id), self.x**(id-1))
setattr(self, 'g{}_{}'.format(id,id+1), (1/alpha) * (self.x**(1-id)) if n_beakers>1 else (1/beta))
# -> if only 1 beaker (i.e., only decay), the longest time scale is used for that beaker
# If requested, print information to the screen
if verbose:
print_info(n_beakers, alpha, beta, adam=False)
def step(self, closure=None):
'''Performs a single optimization step.
Args:
closure (callable, optional): a closure that re-evaluates the model and returns the loss
'''
loss = None
if closure is not None:
loss = closure()
# Loop over all parameter-groups
for group in self.param_groups:
# Loop over all parameters within this parameter-group
for p in group['params']:
# Get the gradient for this parameter `p`
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('ComplexSynapse does not support sparse gradients.')
# Get the state for this parameter (initially this is an empty dict)
state = self.state[p]
# If not yet done, initialize the state
if len(state)==0 and self.n_beakers>0:
init = group['init']
# -"level of the beakers"
for beaker_id in range(2, self.n_beakers+1):
if init=="same":
state['u{}'.format(beaker_id)] = p.data.clone().detach()
elif init=="zero":
state['u{}'.format(beaker_id)] = torch.zeros_like(p.data)
# -last 'extra' beaker is not really a beaker, but a leak-term
state['u{}'.format(self.n_beakers+1)] = torch.zeros_like(p.data)
# Update the synaptic strength (i.e., the first beaker)
step_size = group['lr']/self.C1 if self.n_beakers>0 else group['lr']
change = (-grad + self.g1_2 * (state['u2']-p.data)) if (self.n_beakers>0) else -grad
p.data.add_(step_size, change)
# Update all other beakers one-by-one
if self.n_beakers>1:
state['u1'] = p.data
for id in range(2, self.n_beakers+1):
step_size = group['lr'] / getattr(self, 'C{}'.format(id))
inflow = getattr(self, 'g{}_{}'.format(id-1, id)) * (
state['u{}'.format(id-1)]-state['u{}'.format(id)]
)
backflow = getattr(self, 'g{}_{}'.format(id,id+1)) * (
state['u{}'.format(id+1)]-state['u{}'.format(id)]
)
state['u{}'.format(id)].add_(step_size, inflow+backflow)
# If provided, execute and return the closure-object
return loss
class AdamComplexSynapse(Optimizer):
'''Implements the complex synapse algorithm (Benna & Fusi, 2016) as a PyTorch-optimizer, combined with Adam.
Args:
params (iterable): iterable of parameters (`synapses`) to optimize or iterable of dicts defining param groups
lr (float, optional): learning rate (default: 0.001)
betas (tuple, optional): coefs for computing running mean of gradient and its square (default: (0.9, 0.999))
eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8)
n_beakers (int, optional): number of beakers (0 = standard; 1 = only decay at timescale ``beta``; default: 6)
alpha (float, optional): shortest synaptic timescale (timescale of 1st beaker = ``C_1/g_{1,2}``; default: 1)
beta (float, optional): longest synaptic timescale (timescale of last beaker = ``C_k/g_{k,k+1}``; default: 1024)
init (str, optional, `same`|`zero`): how should the beakers be initialized (default: `same`)
verbose (bool, optional): if ``True``, information about chosen settings is printed to screen
NOTES:
- the arguments `n_beakers`, `alpha` and `beta` cannot be set per parameter-group!
- if `n_beakers` is set to 0, this corresponds to standard SGD
- if `n_beakers` is set to 1, this corresponds to standard SGD with decay of ``1/beta``
'''
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, n_beakers=6, alpha=1., beta=1024.,
init='same', verbose=False):
# Check for invalid arguments
if not 0.0 <= lr:
raise ValueError("Invalid learning rate: {}".format(lr))
if not 0.0 <= eps:
raise ValueError("Invalid epsilon value: {}".format(eps))
if not 0.0 <= betas[0] < 1.0:
raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0]))
if not 0.0 <= betas[1] < 1.0:
raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1]))
if not init in ('same', 'zero', 'random'):
raise ValueError("Invalid initialization code: {}".format(init))
# Deal with arguments set per parameter group
defaults = dict(lr=lr, betas=betas, eps=eps, init=init)
super(AdamComplexSynapse, self).__init__(params, defaults)
# Set the parameters of the beakers
self.n_beakers = n_beakers
self.alpha = alpha
self.beta = beta
self.x = (beta/alpha)**(1/(2*n_beakers-2)) if n_beakers>1 else beta
for id in range(1, n_beakers+1):
setattr(self, 'C{}'.format(id), self.x**(id-1))
setattr(self, 'g{}_{}'.format(id,id+1), (1/alpha) * (self.x**(1-id)) if n_beakers>1 else (1/beta))
# -> if only 1 beaker, the longest time scale is used for that beaker
# If requested, print information to the screen
if verbose:
print_info(n_beakers, alpha, beta, adam=True)
def step(self, closure=None):
'''Performs a single optimization step.
Args:
closure (callable, optional): a closure that re-evaluates the model and returns the loss
'''
loss = None
if closure is not None:
loss = closure()
# Loop over all parameter-groups
for group in self.param_groups:
beta1, beta2 = group['betas']
# Loop over all parameters within this parameter-group
for p in group['params']:
# Get the gradient for this parameter `p`
if p.grad is None:
continue
grad = p.grad.data
if grad.is_sparse:
raise RuntimeError('AdamComplexSynapse does not support sparse gradients.')
# Get the state for this parameter (initially this is an empty dict)
state = self.state[p]
# If not yet done, initialize the state
if len(state)==0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = torch.zeros_like(p.data)
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = torch.zeros_like(p.data)
# The beakers of the Complex-Synapse part
if self.n_beakers>0:
init = group['init']
# -"level of the beakers"
for beaker_id in range(2, self.n_beakers+1):
if init=="same":
state['u{}'.format(beaker_id)] = p.data.clone().detach()
elif init=="zero":
state['u{}'.format(beaker_id)] = torch.zeros_like(p.data)
elif init=="random":
raise NotImplementedError()
# -last 'extra' beaker is not really a beaker, but a leak-term
state['u{}'.format(self.n_beakers+1)] = torch.zeros_like(p.data)
# Keep track of number of updates so far
state['step'] += 1
# Read out the relevant state variables for the Adam-part
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
# Decay the first and second moment running average coefficient
exp_avg.mul_(beta1).add_(1 - beta1, grad)
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
denom = exp_avg_sq.sqrt().add_(group['eps'])
# Get the by Adam "proposed_change" (i.e., the input to the Complex Synapse algorithm)
proposed_change = exp_avg / denom
# Calculate bias-correction and step-size
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
adjusted_lr = group['lr'] * math.sqrt(bias_correction2) / bias_correction1
# Update the synaptic strength (i.e., the first beaker)
step_size = adjusted_lr/self.C1 if self.n_beakers>0 else adjusted_lr
change = (-proposed_change + self.g1_2*(state['u2']-p.data)) if (self.n_beakers>0) else -proposed_change
p.data.add_(step_size, change)
# Update all other beakers one-by-one
if self.n_beakers>1:
state['u1'] = p.data
for id in range(2, self.n_beakers+1):
step_size = adjusted_lr / getattr(self, 'C{}'.format(id)) ## QUESTION: adjusted or normal lr?
inflow = getattr(self, 'g{}_{}'.format(id-1, id)) * (
state['u{}'.format(id-1)]-state['u{}'.format(id)]
)
backflow = getattr(self, 'g{}_{}'.format(id,id+1)) * (
state['u{}'.format(id+1)]-state['u{}'.format(id)]
)
state['u{}'.format(id)].add_(step_size, inflow+backflow)
# If provided, execute and return the closure-object
return loss