-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathoptions_gen_classifier.py
138 lines (116 loc) · 8.98 KB
/
options_gen_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
from utils import checkattr
##-------------------------------------------------------------------------------------------------------------------##
# Where to store the data / results / models / plots
store = "./store"
##-------------------------------------------------------------------------------------------------------------------##
####################
## Define options ##
####################
def define_args(filename, description):
parser = argparse.ArgumentParser('./{}.py'.format(filename), description=description)
return parser
def add_general_options(parser, **kwargs):
parser.add_argument('--no-save', action='store_false', dest='save', help="don't save trained models")
parser.add_argument('--full-stag', type=str, metavar='STAG', default='none', help="tag for saving full model")
parser.add_argument('--full-ltag', type=str, metavar='LTAG', default='none', help="tag for loading full model")
parser.add_argument('--test', action='store_false', dest='train', help='evaluate previously saved model')
parser.add_argument('--get-stamp', action='store_true', help='print param-stamp & exit')
parser.add_argument('--seed', type=int, default=0, help='random seed (for each random-module used)')
parser.add_argument('--no-gpus', action='store_false', dest='cuda', help="don't use GPUs")
parser.add_argument('--data-dir', type=str, default='./store/datasets', dest='d_dir', help="default: %(default)s")
parser.add_argument('--model-dir', type=str, default='./store/models', dest='m_dir', help="default: %(default)s")
parser.add_argument('--plot-dir', type=str, default='./store/plots', dest='p_dir', help="default: %(default)s")
parser.add_argument('--results-dir', type=str, default='./store/results', dest='r_dir', help="default: %(default)s")
return parser
def add_eval_options(parser, **kwargs):
# evaluation parameters
eval = parser.add_argument_group('Evaluation Parameters')
eval.add_argument('--eval-n', type=int, default=0, help="number of test samples per class (0=all)")
eval.add_argument('--eval-s', type=int, default=10, help="number of importance samples")
eval.add_argument('--no-normal-eval', action='store_true', help="don't evaluate gen model with importance sampling")
eval.add_argument('--from-replay', action='store_true', help="train classifier with replay from gen models")
eval.add_argument('--replay-iters', type=int, default=2000, help="# of iters for training with replay")
eval.add_argument('--visdom', action='store_true', help="use visdom for on-the-fly plots")
eval.add_argument('--loss-log', type=int, default=100, metavar="N", help="# iters after which to plot loss")
eval.add_argument('--sample-log', type=int, metavar="N", help="# iters after which to plot samples")
eval.add_argument('--sample-n', type=int, default=64, help="# images to show")
eval.add_argument('--no-samples', action='store_true', help="don't plot generated images")
eval.add_argument('--eval-tag', type=str, metavar="ETAG", default="e20N", help="tag for evaluation model")
return parser
def add_task_options(parser, **kwargs):
# benchmark parameters
task_params = parser.add_argument_group('Benchmark Parameters')
task_choices = ['CIFAR10', 'CIFAR100', 'CORe50', 'MNIST']
task_params.add_argument('--experiment', type=str, default='MNIST', choices=task_choices)
task_params.add_argument('--iters', type=int, help="# of iterations to optimize main model")
task_params.add_argument('--single-epochs', action='store_true', help='single pass over data(replaces "--iters")')
task_params.add_argument('--batch', type=int, default=None, help="batch-size")
task_params.add_argument('--pre-convE', action='store_true', help="use pretrained convE-layers")
task_params.add_argument('--convE-ltag', type=str, metavar='LTAG', default='s100N',
help="tag for loading convE-layers")
task_params.add_argument('--augment', action='store_true',
help="augment training data (random crop & horizontal flip)")
task_params.add_argument('--no-norm', action='store_false', dest='normalize',
help="don't normalize images (only for CIFAR)")
return parser
def add_model_options(parser, **kwargs):
# model architecture parameters
model = parser.add_argument_group('Parameters Main Model')
model.add_argument('--hidden', action='store_true', help="learn generative classifier on latent features")
# -conv-layers
model.add_argument('--conv-type', type=str, default="standard", choices=["standard", "resNet"])
model.add_argument('--n-blocks', type=int, default=2, help="# blocks per conv-layer (only for 'resNet')")
model.add_argument('--depth', type=int, help="# of convolutional layers (0 = only fc-layers)")
model.add_argument('--reducing-layers', type=int, dest='rl',help="# of layers with stride (=image-size halved)")
model.add_argument('--channels', type=int, default=16, help="# of channels 1st conv-layer (doubled every 'rl')")
model.add_argument('--conv-bn', type=str, default="yes", help="use batch-norm in the conv-layers (yes|no)")
model.add_argument('--conv-nl', type=str, default="relu", choices=["relu", "leakyrelu"])
model.add_argument('--global-pooling', action='store_true', dest='gp', help="ave global pool after conv-layers")
# -fully-connected-layers
model.add_argument('--fc-layers', type=int, default=3, dest='fc_lay', help="# of fully-connected layers")
model.add_argument('--fc-units', type=int, metavar="N", help="# of units in first fc-layers")
model.add_argument('--fc-drop', type=float, default=0., help="dropout probability for fc-units")
model.add_argument('--fc-bn', type=str, default="no", help="use batch-norm in the fc-layers (no|yes)")
model.add_argument('--fc-nl', type=str, default="relu", choices=["relu", "leakyrelu", "none"])
model.add_argument('--h-dim', type=int, metavar="N", help='# of hidden units final layer (default: fc-units)')
# NOTE: number of units per fc-layer linearly declinces from [fc_units] to [h_dim].
model.add_argument('--z-dim', type=int, default=100, help='size of latent representation (def=100)')
model.add_argument('--deconv-type', type=str, default="standard", choices=["standard", "resNet"])
model.add_argument('--no-bn-dec', action='store_true', help="don't use batchnorm in decoder")
model.add_argument('--prior', type=str, default="standard", choices=["standard", "vampprior", "GMM"])
model.add_argument('--n-modes', type=int, default=1, help="how many modes for prior? (def=1)")
return parser
def add_train_options(parser, **kwargs):
# training hyperparameters / initialization
train_params = parser.add_argument_group('Training Parameters')
train_params.add_argument('--lr', type=float, default=0.001, help="learning rate")
train_params.add_argument('--init-weight', type=str, default='standard', choices=['standard', 'xavier'])
train_params.add_argument('--init-bias', type=str, default='standard', choices=['standard', 'constant'])
train_params.add_argument('--freeze-convE', action='store_true', help="freeze parameters of convE-layers")
# NOTE: when using hidden, the conv-layers are automatically frozen
train_params.add_argument('--recon-loss', type=str, choices=['MSE', 'BCE'])
return parser
##-------------------------------------------------------------------------------------------------------------------##
############################
## Check / modify options ##
############################
def set_defaults(args, **kwargs):
# -set default-values for certain arguments based on chosen experiment
args.normalize = args.normalize if args.experiment in ('CIFAR10', 'CIFAR100') else False
args.depth = (5 if args.experiment in ('CIFAR10', 'CIFAR100') else 0) if args.depth is None else args.depth
if hasattr(args, "recon_loss"):
args.recon_loss = ("BCE" if args.experiment=="MNIST" else "MSE") if args.recon_loss is None else args.recon_loss
args.batch = (128 if args.experiment in ('MNIST', 'CORe50') else 256) if args.batch is None else args.batch
args.fc_units = (400 if args.experiment in ('MNIST', 'CORe50') else 2000) if args.fc_units is None else args.fc_units
args.iters = (200 if args.experiment in ('MNIST', 'CORe50') else 500) if args.iters is None else args.iters
# -for other unselected options, set default values (not specific to chosen scenario / experiment)
args.h_dim = args.fc_units if args.h_dim is None else args.h_dim
if hasattr(args, "rl"):
args.rl = args.depth-1 if args.rl is None else args.rl
return args
def check_for_errors(args, **kwargs):
if checkattr(args, "normalize") and hasattr(args, "recon_los") and args.recon_loss=="BCE":
raise ValueError("'BCE' is not a valid reconstruction loss with normalized images")
if checkattr(args, "hidden") and hasattr(args, "recon_los") and args.recon_loss=="BCE":
raise ValueError("'BCE' is not a valid reconstruction loss with option '--hidden'")