-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrunner.py
101 lines (87 loc) · 3.81 KB
/
runner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
from Simulator.simulator import Simulator
import sys
if __name__ == "__main__":
'''
Runner code to start the training and game play.
'''
# Helper function to parse input file, return false if input file can not be opened
# and assuming that if input file can be opened, the parameters for each training are written in one line
# in following format: "alpha_value gamma_value epsilon_value"
def readInputFile(parameterList, inputFileName):
try:
inputFile = open(inputFileName, 'r')
except IOError:
print('cannot open', inputFileName)
return False
else:
inputParameters = inputFile.readlines()
for line in inputParameters:
parametersValues = line.split(' ')
parameterList.append((
float(parametersValues[0]), float(parametersValues[1]), float(parametersValues[2]),
int(parametersValues[3])))
inputFile.close()
return True
def printUsage():
print "Usage: python runner.py [-h (usage)][-m single/double][-a alpha_value] [-g gamma_value] [-e epsilon_value] [-n num_games] [-f input_file] [-s file_to_save_qtable]"
print "-- This script is used to train an agent for pong using Q learning technique, feel free to change the configuration in stage.cfg to specify the size of discrete states"
sys.exit()
pass
# process user input, or use default values if user doesn't specify parameters
parameterList = []
alpha_value = 0.4
gamma_value = 0.95
epsilon_value = 0.04
num_games = 100000
outputFileName = "results.txt"
outputMode = 'a'
q_table_output = None
multiple_paddles = False
# parse arguments
if (len(sys.argv) >= 2):
if len(sys.argv) % 2 != 1:
printUsage()
i = 1
while i < len(sys.argv):
if sys.argv[i] == "-h" or sys.argv[i+1] == "-h":
printUsage()
if sys.argv[i] == "-m" and sys.argv[i + 1] == "double":
multiple_paddles = True
if sys.argv[i] == "-a":
alpha_value = float(sys.argv[i + 1])
if sys.argv[i] == "-g":
gamma_value = float(sys.argv[i + 1])
if sys.argv[i] == "-e":
epsilon_value = float(sys.argv[i + 1])
if sys.argv[i] == "-n":
num_games = int(sys.argv[i + 1])
if sys.argv[i] == "-f":
outputMode = 'w'
readInputFile(parameterList, sys.argv[i + 1])
outputFileName = "out_" + sys.argv[i + 1]
if sys.argv[i] == "-s":
q_table_output = sys.argv[i+1]
i += 2
simulator = None
parameterList.append((alpha_value, gamma_value, epsilon_value, num_games))
target = open(outputFileName, outputMode)
for parameters in parameterList:
alpha_value = parameters[0]
gamma_value = parameters[1]
epsilon_value = parameters[2]
num_games = parameters[3]
simulator = Simulator(num_games, alpha_value, gamma_value, epsilon_value)
simulator.train_agent(multiple_paddles)
totalScore = 0
highestScore = 0
for i in range(1000):
score = simulator.play_game(False)
if score > highestScore:
highestScore = score
totalScore += score
resultForCurrentParameters = "Using alpha = {0}, gamma = {1}, epsilon = {2} and number of games = {3}\nFor playing 1000 consecutive games, average score = {4}, highest score = {5}\n\n".format(
alpha_value, gamma_value, epsilon_value, num_games, totalScore / 1000, highestScore)
target.write(resultForCurrentParameters)
target.close()
if q_table_output != None and simulator != None:
simulator.export_q_table(q_table_output)