-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathback.tex
233 lines (194 loc) · 7.22 KB
/
back.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
\documentclass[UTF8]{ctexart}
\usepackage{amsmath}
\usepackage{subfigure}
\usepackage{amsfonts}
\usepackage{amsthm}
\usepackage{multirow}
\usepackage{colortbl}
\usepackage{booktabs}
\usepackage{amssymb}
\include{math_symbol}
\newtheorem{defi}{定义}
\newtheorem{thm}{定理}
\newtheorem{lem}{引理}
\newtheorem{exam}{例子}
\newcommand{\ud}{\mathrm{d}}
\begin{document}
\section{矩阵序列和矩阵级数}
\label{sec:ju_zhen_xu_lie_he_ju_zhen_ji_shu_}
\subsubsection{矩阵序列}
\label{ssub:ju_zhen_xu_lie_}
\begin{defi}[矩阵序列]
\[
\{\MA_k\}
\]
\end{defi}
\begin{defi}[广义矩阵范数]
设$\norm{\cdot}$为$\SetC^{m \times n}$上的广义矩阵范数。
\end{defi}
\begin{defi}[收敛矩阵]
设$\MA \in \SetC^{n \times n}$,称$\MA$为收敛矩阵,如果$\MA^k \to \MO$
\end{defi}
\begin{defi}[$\MA^{(k)}$的界]
\[
|\Sa_{ij}^{(k)}| < C, \quad i = 1, \cdots, m; j = 1, \cdots, n,
\]
称$C$为$\MA^{(k)}$的界。
\end{defi}
\subsubsection{矩阵级数}
\label{ssub:ju_zhen_ji_shu_}
\begin{defi}[矩阵级数]
$\{\MA^{(k)}\}$所形成的无穷和$$\MA^{(0)} + \MA^{(1)} + \cdots +\MA^{(k)} + \cdots$$为矩阵级数,记为$$\sum_{k=0}^{\infty} \MA^{(k)}$$
\end{defi}
\begin{defi}[收敛与绝对收敛]
设$\MA^{(k)} = \left( a_{ij}^{(k)} \right) \in \SetC^{m \times n}$, $\MS^{(k)} = \left( s_{ij}^{(k)} \right) \in \SetC^{m \times n}$。
\end{defi}
\subsubsection{矩阵幂级数}
\label{ssub:ju_zhen_mi_ji_shu_}
\begin{thm}
设$\MA \in \SetC^{n \times n}$,则 $\MA$ 的幂级数
\[
\sum_{k=0}^{\infty} \MA^k = \MI + \MA + \MA^2 + \cdots + \MA^k + \cdots
\]
收敛的充要条件是$\MA$为收敛矩阵,且在收敛时其和为$(\MI - \MA)^{-1}$。
\end{thm}
\begin{thm}
设$\norm{\cdot}$为$\SetC^{n \times n}$上的矩阵范数。若$\MA \in \SetC^{n \times n}$满足$\norm{A} < 1$,则对任意非负整数$m$,有
\[
\norm{(\MI - \MA)^{-1} - \sum_{k=0}^m \MA^k} \le \frac{\norm{\MA}^{m+1}}{1-\norm{\MA}}
\]
\end{thm}
\begin{thm}
设幂级数
\[
f(z) = \sum_{k=0}^{\infty} c_kz^k
\]
的收敛半径为$r$。若$\MA \in \SetC^{n \times n}$满足$\rho(\MA) < r$,则矩阵幂级数
\[
\sum_{k=0}^{\infty} c_k\MA^k
\]
绝对收敛;若$\rho(\MA)>r$,则矩阵幂级数发散。
\end{thm}
% ----------------------------------
\section{矩阵函数}
\label{sec:ju_zhen_han_shu_}
\subsubsection{定义与性质}
\label{ssub:ding_yi_yu_xing_zhi_}
\begin{defi}
设一元函数$f(z)$可展开为$z$的幂级数
\[
f(z) = \sum_{k=0}^{\infty} c_kz^k, |z| < r.
\]
当$\MA \in \SetC^{n \times n}$的普半径$\rho(\MA) < r$时,$\sum_{k=0}^{\infty} c_k\MA^k$收敛,称其和为矩阵函数,记为
\[
f(\MA) = \sum_{k=0}^{\infty} c_k\MA^k.
\]
\end{defi}
\subsubsection{矩阵函数值的计算}
\label{ssub:ju_zhen_han_shu_zhi_de_ji_suan_}
% ----------------------------------
\section{矩阵的微分和积分}
\label{sec:ju_zhen_de_wei_fen_he_ji_fen_}
\subsection{以一元函数为元素的矩阵的微积分}
\label{sub:yi_yi_yuan_han_shu_wei_yuan_su_de_ju_zhen_de_wei_ji_fen_}
\[
\MA(t) = \begin{bmatrix}
\Sa_{11}(t) & \cdots & \Sa_{1n}(t) \\
\vdots & & \vdots \\
\Sa_{m1}(t) & \cdots & \Sa_{mn}(t)
\end{bmatrix}
\]
\begin{defi}[矩阵微分]
\end{defi}
\begin{defi}
设$\MA(t)$和$\MB(t)$为两个可微矩阵。
\begin{enumerate}
\item \[
\frac{\ud}{\ud t}\left( \MA(t) \otimes \MB(t) \right) = \frac{\ud}{\ud t}\MA(t) \otimes \MB(t) + \MA(t) \otimes \frac{\ud}{\ud t}\MB(t)
\]
\item \[
\frac{\ud}{\ud t} \MA(t)^{-1} = - \MA(t)^{-1} \cdot \frac{\ud}{\ud t}\MA(t)\cdot \MA(t)^{-1}
\]
\end{enumerate}
\end{defi}
\begin{defi}[连续]
\end{defi}
\begin{defi}[矩阵积分]
\[
\int_{t_0}^{t_1} \MA(t) \ud t = \left( \int_{t_0}^{t_1} a_{ij}(t)\ud t \right)_{i = 1, \cdot, m; \, j = 1, \cdot, n}
\]
\end{defi}
\subsection{函数对向量的微分}
\label{sub:han_shu_dui_xiang_liang_de_wei_fen_}
\begin{defi}
设$f(\Vx)$为纯量函数,其中$\Vx = \left[x_1, \cdots, x_n \right]^T \in \SetC^n$,则
\[
\frac{\partial f(\Vx)}{\partial \Vx} = \begin{bmatrix}
\frac{\partial f(\Vx)}{\partial \Vx_1} \\
\vdots \\
\frac{\partial f(\Vx)}{\partial \Vx_n}
\end{bmatrix}
\]
\end{defi}
\begin{exam}
设$\MA = (\Sa_{ij}) \in \SetC^{n \times n}$,$\Vx = \left[ x_1, \cdots, x_n \right]^T \in \SetC^n$
\[
f(\Vx) = \Vx^T\MA\Vx = \sum_{i=1}^n \sum_{j=1}^n \Sa_{ij}x_ix_j
\]
因此$\forall k = 1, \cdots, n$
\[
\frac{\partial f(\Vx)}{\partial x_k} = \frac{\partial}{\partial x_k} \left( \sum_{i=1}^n \sum_{j=1}^n \Sa_{ij}x_ix_j \right) = \sum_{i=1}^n \Sa_{ik}x_i + \sum_{j=1}^n \Sa_{jk}x_j
\]
所以
\[
\frac{\partial \Vx^T \MA \Vx}{\partial \Vx} = \MA \Vx + \MA^T \Vx
\]
特别地,若$\MA$为对称矩阵,则
\[
\frac{\partial \Vx^T \MA \Vx}{\partial \Vx} = 2 \MA \Vx
\]
\end{exam}
\begin{defi}
$\Vx = \left[x_1, \cdots, x_n \right]^T$,$f(\Vx) = \left[f_1(\Vx), \cdots, f_m(\Vx) \right]^T$
\[
\frac{\partial f(\Vx)}{\partial \Vx} = \begin{bmatrix}
\frac{\partial f_1(\Vx)}{\partial x_1} & \cdots & \frac{\partial f_m(\Vx)}{\partial x_1} \\
\vdots & & \vdots \\
\frac{\partial f_1(\Vx)}{\partial x_n} & \cdots & \frac{\partial f_m(\Vx)}{\partial x_n}
\end{bmatrix}
\]
\end{defi}
\begin{defi}[Jacobi矩阵]
$\Vx = \left[x_1, \cdots, x_n \right]^T$,$f(\Vx) = \left[f_1(\Vx), \cdots, f_m(\Vx) \right]^T$
\[
\frac{\partial f(\Vx)}{\partial \Vx^T} = \begin{bmatrix}
\frac{\partial f_1(\Vx)}{\partial x_1} & \cdots & \frac{\partial f_1(\Vx)}{\partial x_n} \\
\vdots & & \vdots \\
\frac{\partial f_m(\Vx)}{\partial x_1} & \cdots & \frac{\partial f_m(\Vx)}{\partial x_n}
\end{bmatrix}
\]
\end{defi}
\begin{thm}
纯量函数关于向量的微分性质:
\begin{enumerate}
\item $\frac{\partial(c_1f(\Vx) + c_2g(\Vx))}{\partial \Vx} = c_1 \frac{\partial f(\Vx)}{\partial \Vx} + c_2 \frac{\partial g(\Vx)}{\partial \Vx}$
\item $\frac{\partial f(\Vx)g(\Vx)}{\partial \Vx} = g(\Vx) \frac{\partial f(\Vx)}{\Vx} + f(\Vx) \frac{\partial g(\Vx)}{\partial \Vx}$
\item $\frac{\partial f(\Vy(\Vx))}{\partial \Vx} = \frac{\partial \left( \Vy(\Vx) \right)^T}{\partial \Vx} \frac{\partial f(\Vy)}{\partial \Vy}$
\end{enumerate}
\end{thm}
\begin{exam}[Hessian矩阵]
\[
\frac{\partial^2 f(\Vx)}{\partial \Vx \partial \Vx^T } = \frac{\partial}{\partial \Vx^T} \left(\frac{\partial f(\Vx)}{\partial \Vx} \right) = \begin{bmatrix}
\frac{\partial^2 f(\Vx)}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f(\Vx)}{\partial x_1 \partial x_n} \\
\vdots & & \vdots \\
\frac{\partial^2 f(\Vx)}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f(\Vx)}{\partial x_n \partial x_n}
\end{bmatrix}
\]
若$f(\Vx) = \Vx^T\MA\Vx$,则
\[
\frac{\partial^2(\Vx^T\MA\Vx)}{\partial \Vx \, \partial \Vx^T} = \MA + \MA^T
\]
\end{exam}
\section{一些应用}
\label{sec:yi_xie_ying_yong_}
\end{document}