-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathpolyFit.c
269 lines (234 loc) · 7.42 KB
/
polyFit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
/**
******************************************************************************
* @file polyFit.c
* @brief Source file for fitting polynomials to datasets.
******************************************************************************
* @attention
*
* This file is heavily dependent on dynamic memory allocation, ew.
* I had to develop this quickly over a day and test on the host machine.
* Malloc was faster to develop with, but I know it is not ideal for embedded.
* Will refactor to static alloc when I have the time ಥ_ಥ
*
******************************************************************************
*/
#include "polyFit.h"
/**
* @brief Initialise a polynomial and return a pointer to it.
*
* @param degree Degree of the polynomial.
* @return Pointer to the Initialised polynomial.
*/
Polynomial *initPolynomial(int32_t degree) {
Polynomial *poly = (Polynomial *)malloc(sizeof(Polynomial));
// Check if memory allocation was successful
if (poly == NULL) {
// Error: Memory allocation failed for polynomial structure.
exit(EXIT_FAILURE); // or handle the error in a way suitable for your
// application
}
poly->coefficients = (float *)malloc((degree + 1) * sizeof(float));
// Check if memory allocation was successful
if (poly->coefficients == NULL) {
// Error: Memory allocation failed for polynomial coefficients
free(poly); // free the previously allocated memory for the structure
exit(EXIT_FAILURE); // or handle the error in a way suitable for your
// application
}
// Init coefficients to zero
for (int32_t i = 0; i <= degree; ++i) {
poly->coefficients[i] = 0.0;
}
poly->degree = degree;
return (poly);
}
/**
* @brief Free memory allocated for a polynomial.
*
* @param poly Pointer to the polynomial to be freed.
*/
void freePolynomial(Polynomial *poly) { free(poly->coefficients); }
/**
* @brief Perform Gaussian elimination to solve a system of linear equations.
*
* @param A Coefficient matrix.
* @param B Right-hand side vector.
* @param x Solution vector.
* @param n Size of the system.
*/
void gaussianElimination(float **A, float *B, float *x, int32_t n) {
for (int32_t i = 0; i < n; ++i) {
// Pivot
int32_t max = i;
for (int32_t j = i + 1; j < n; ++j) {
if (tinyFabs(A[j][i]) > tinyFabs(A[max][i])) {
max = j;
}
}
// Swap rows i and max
float *temp = A[i];
A[i] = A[max];
A[max] = temp;
float t = B[i];
B[i] = B[max];
B[max] = t;
// Forward elimination
for (int32_t j = i + 1; j < n; ++j) {
float f = A[j][i] / A[i][i];
for (int32_t k = i; k < n; ++k) {
A[j][k] -= A[i][k] * f;
}
B[j] -= B[i] * f;
}
}
// Backward substitution
for (int32_t i = n - 1; i >= 0; --i) {
for (int32_t j = i + 1; j < n; ++j) {
B[i] -= A[i][j] * x[j];
}
x[i] = B[i] / A[i][i];
}
}
/**
* @brief Perform least squares polynomial regression.
*
* @param x Array of x values.
* @param y Array of corresponding y values.
* @param numPoints Number of data points.
* @param degree Degree of the polynomial regression.
* @param resultPoly Pointer to store the result polynomial.
*/
void leastSquaresPolynomialRegression(const float *x, const float *y,
int32_t numPoints, int32_t degree,
Polynomial *resultPoly) {
// Allocate matrices A and B
float **A = (float **)malloc((degree + 1) * sizeof(float *));
for (int32_t i = 0; i <= degree; ++i) {
A[i] = (float *)malloc((degree + 1) * sizeof(float));
}
float *B = (float *)malloc((degree + 1) * sizeof(float));
// Initialise matrices A and B
for (int32_t i = 0; i <= degree; ++i) {
B[i] = 0.0;
for (int32_t j = 0; j <= degree; ++j) {
A[i][j] = 0.0;
for (int32_t k = 0; k < numPoints; ++k) {
A[i][j] += tinyPow(x[k], i + j);
}
}
for (int32_t k = 0; k < numPoints; ++k) {
B[i] += y[k] * tinyPow(x[k], i);
}
}
// Solve the system of linear equations (Ax = B) for coefficients
gaussianElimination(A, B, resultPoly->coefficients, degree + 1);
// Free allocated memory for matrices
for (int32_t i = 0; i <= degree; ++i) {
free(A[i]);
}
free(A);
free(B);
}
/**
* @brief Evaluate the polynomial at a given x value.
*
* @param poly Pointer to the polynomial.
* @param x Value at which to evaluate the polynomial.
* @return Result of the polynomial evaluation.
*/
float evaluatePolynomial(const Polynomial *poly, float x) {
if (poly == NULL || poly->coefficients == NULL) {
return 0.0f;
}
float result = 0.0;
for (int32_t i = 0; i <= poly->degree; ++i) {
result += poly->coefficients[i] * tinyPow(x, i);
}
// Apply a combination of relative and absolute thresholds
// Absolute threshold to consider a value negligible
float absoluteThreshold = 1e-6;
// Relative threshold relative to coefficient magnitudes
float relativeThreshold = 1e-6;
// If the result is close to zero, set it to zero
if (tinyFabs(result) <
relativeThreshold *
getMaxCoefficientMagnitude(poly->coefficients, poly->degree) ||
tinyFabs(result) < absoluteThreshold) {
result = 0.0f;
}
return (result);
}
/**
* @brief Get the maximum absolute magnitude among the polynomial coefficients.
*
* @param coefficients Array of polynomial coefficients.
* @param degree Degree of the polynomial.
* @return Maximum absolute magnitude among the coefficients.
*/
float getMaxCoefficientMagnitude(const float *coefficients, int32_t degree) {
if (coefficients == NULL) {
return 0.0f;
}
float maxMagnitude = 0.0;
for (int32_t i = 0; i <= degree; ++i) {
float magnitude = tinyFabs(coefficients[i]);
if (magnitude > maxMagnitude) {
maxMagnitude = magnitude;
}
}
return (maxMagnitude);
}
/**
* @brief Function to calculate the power of a base to an exponent.
* @brief This is to avoid having to link the MASSIVE math.h library.
* @param base The base value (float).
* @param exponent The exponent value (signed 32-bit integer).
* @return Result of base raised to the power of exponent.
*/
float tinyPow(float base, int32_t exponent) {
// Check for special cases
if (base == 0.0f) {
if (exponent == 0) {
return 1.0f; // 0^0 is considered 1 by convention
} else if (exponent < 0) {
// Handling 0 ^ negative_exponent is undefined, return an error value or
// NaN as needed
return (0.0f); // Adjust this according to your specific requirements
}
}
// Initialise result
float result = 1.0f;
// Determine the positive or negative exponent
int32_t absExponent = exponent > 0 ? exponent : -exponent;
// Calculate power using binary exponentiation for efficiency
while (absExponent > 0) {
if (absExponent % 2 == 1) {
result *= base;
}
base *= base;
absExponent /= 2;
}
// Adjust result for negative exponent
if (exponent < 0) {
result = 1.0f / result;
}
return (result);
}
/**
* @brief Calculate the absolute value of a floating-point number.
* @param x The input floating-point number.
* @return Absolute value of x.
*/
float tinyFabs(float x) {
// Handle NaN (Not-a-Number)
if (!(x == x)) {
// Return NaN if x is NaN
return (x);
}
// Handle negative zero
if (x == 0.0f && *((uint32_t *)&x) & 0x80000000) {
// Return positive zero if x is negative zero
return (0.0f);
}
return ((x < 0.0f) ? -x : x);
}