forked from Silectio/Projet-Computer-Vision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathloadDataset.py
43 lines (36 loc) · 1.62 KB
/
loadDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
import os
import glob
from PIL import Image
from torch.utils.data import Dataset, DataLoader
class WildfireDataset(Dataset):
def __init__(self, root_dir, split='train', transform=None):
self.root_dir = os.path.join(root_dir, split)
self.transform = transform
self.image_paths = []
self.labels = []
classes = ["wildfire", "nowildfire"]
for cls_idx, cls_name in enumerate(classes):
folder = os.path.join(self.root_dir, cls_name)
for img_path in glob.glob(os.path.join(folder, "*.jpg")):
self.image_paths.append(img_path)
# On enlève bien les lables pour le train split !!!
if split == 'train':
self.labels.append(0)
else:
self.labels.append(cls_idx)
def __len__(self):
return len(self.image_paths)
def __getitem__(self, idx):
img = Image.open(self.image_paths[idx]).convert("RGB")
label = self.labels[idx]
if self.transform:
img = self.transform(img)
return img, label
def get_dataloaders(root_dir="dataset", transform=None, batch_size=16):
train_data = WildfireDataset(root_dir, 'train', transform)
valid_data = WildfireDataset(root_dir, 'valid', transform)
test_data = WildfireDataset(root_dir, 'test', transform)
train_loader = DataLoader(train_data, batch_size=batch_size, shuffle=True)
valid_loader = DataLoader(valid_data, batch_size=batch_size, shuffle=False)
test_loader = DataLoader(test_data, batch_size=batch_size, shuffle=False)
return train_loader, valid_loader, test_loader