forked from Digital-Tamil-Studies/common-voice-tamil
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommonvoice_sentence_generator.py
269 lines (164 loc) · 6.6 KB
/
commonvoice_sentence_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
#!/usr/bin/env python
# coding: utf-8
# In[ ]:
# -*- coding: utf-8 -*-
#!/usr/bin/env python3
import pandas as pd
import nltk
import tamil
import re
import os
import glob
from nltk.tokenize import sent_tokenize, word_tokenize
from string import punctuation
nltk.download('punkt')
# In[ ]:
# Symbols list that needs to be removed from sentences
special_symbols = set(punctuation)
special_symbols.remove("!")
special_symbols.remove(",")
special_symbols.remove("?")
special_symbols.remove(".")
special_symbols.add("”")
special_symbols.add("“")
special_symbols.add("‘")
special_symbols.add("’")
special_symbols.add("★")
special_symbols.add("\"")
# In[ ]:
# Sentence word length range
MIN_WORDS_LENGTH = 3
MAX_WORDS_LENGTH = 14
# In[ ]:
# gets path to the text file, cleans it according to rule and returns stats and valid sentences
def get_commonvoice_sentences(text_file_path, work_title):
stats = {'work_title': work_title}
text = get_file_content(text_file_path)
sentences = sent_tokenize(text)
# Drop book's standard headers and footers
sentences = drop_header_and_footers(sentences)
stats['total_sentences_before_processing'] = len(sentences)
valid_sentences = []
for sentence in sentences:
# Remove any words within brackets
sentence = re.sub('\(.*?\)','', sentence)
# Remove extra white spaces
sentence = re.sub("\s\s+", " ", sentence)
# Remove special chracters
sentence_without_symbols = remove_special_characters(sentence, special_symbols)
# Drop sentences if they contain English characters
result = bool(re.search("[a-zA-Z]", sentence_without_symbols))
if result == True:
continue
# Drop sentences if they contain number within a word
sentence_without_symbols = convert_num_to_tamil_string(sentence_without_symbols)
if sentence_without_symbols == False:
continue
# Drop too short and too long sentences
sentence_length = get_sentence_length_without_punctuation(sentence_without_symbols)
if (sentence_length > MAX_WORDS_LENGTH or sentence_length < MIN_WORDS_LENGTH):
continue
sentence_without_symbols = clean_up_sentence(sentence_without_symbols)
sentence_dic = {"work_title": work_title, "sentence": sentence_without_symbols, "sentence_length": sentence_length}
valid_sentences.append(sentence_dic)
# Drop duplicte sentences
valid_sentences_df = pd.DataFrame(valid_sentences)
valid_sentences_df = valid_sentences_df.drop_duplicates(subset='sentence', keep="first")
stats['total_sentences_after_processing'] = valid_sentences_df.shape[0]
return stats, valid_sentences_df
# In[ ]:
#Returns the content of a text file
def get_file_content(text_file_path):
text = ""
with open(text_file_path, 'r', encoding = 'utf-8') as file:
text = file.read()
return text
# In[ ]:
def drop_header_and_footers(sentences):
header_flag = False
footer_flag = False
# Tamil Wikisource
book_content_sentences = []
for sentence in sentences:
if "உலகளாவிய பொதுக் கள உரிமம்" in sentence:
header_flag = True
if "More details about this collaboration" in sentence:
header_flag = False
if "இந்த மின்னூலைப் பற்றி" in sentence:
footer_flag = True
if header_flag == False and footer_flag == False:
book_content_sentences.append(sentence)
return book_content_sentences
# In[ ]:
# Given a sentence, it removes all symbols in the special_symbols list
def remove_special_characters(sentence, special_symbols):
sentence = sentence.translate({ord(p): " " for p in special_symbols})
return sentence
# In[ ]:
# If a word in any sentence is a digit, it converts it to a tamil string
# If there a digit within a word, it returns False
def convert_num_to_tamil_string(sentence):
num_within_word = False
tokens = word_tokenize(sentence)
for i, word in enumerate(tokens):
if word.strip().isdigit():
num_as_string = tamil.numeral.num2tamilstr_american(float(word))
num_as_string = re.sub("\s\s+", " ", num_as_string)
tokens[i] = num_as_string
else:
any_number = re.compile(r"[+-]?\d+(?:\.\d+)?")
if any_number.search(word) is not None:
num_within_word = True
break
if num_within_word == True:
return False
else:
sentence = ' '.join([str(w) for w in tokens])
return sentence
# In[ ]:
# Given a sentence, calculates the word length without punctuation
def get_sentence_length_without_punctuation(sentence):
sentence_without_punctuation = remove_special_characters(sentence, set(punctuation))
words_without_punctuation = word_tokenize(sentence_without_punctuation)
sentence_length = len(words_without_punctuation)
return sentence_length
# In[ ]:
# Remove extra spaces before punctuation
def clean_up_sentence(sentence):
sentence = sentence.replace(" ,", ",")
sentence = sentence.replace(" .", ".")
sentence = sentence.replace(" ?", "?")
sentence = sentence.strip()
return sentence
# In[ ]:
source_texts = "/home/nat/Desktop/code/tamil/open_tamil_texts/collections/tamil_wikisource/data"
extracted_sentences = "cleaned_sentences"
# In[ ]:
source_files = glob.glob(source_texts + "/*.txt")
# In[ ]:
run_report = []
for source_file in source_files:
base_name = os.path.basename(source_file)
work_title = base_name.replace(".txt", "")
print("processing " + work_title)
result = get_commonvoice_sentences(source_file, work_title)
run_report.append(result[0])
valid_sentences_df = result[1]
valid_sentences_df.to_csv(extracted_sentences + "/" + work_title + ".csv", index=False)
# In[ ]:
run_report_df = pd.DataFrame(run_report)
run_report_df
# In[ ]:
# Total number of sentences
total_cv_sentences = run_report_df["total_sentences_after_processing"].sum()
print("Total common voice sentences: " + str(total_cv_sentences))
# In[ ]:
# Percentage
percent_converted_sentences = 100 * (run_report_df["total_sentences_after_processing"].sum() / run_report_df["total_sentences_before_processing"].sum())
# In[ ]:
print("Total common voice sentences as percentage of the original: " + str(percent_converted_sentences))
# In[ ]:
run_report_df.to_csv("tamil_wikisource_run_report.csv", index=False)
# In[ ]:
# In[ ]:
# In[ ]: