-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinception.py
673 lines (603 loc) · 31.8 KB
/
inception.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
import jax
from jax import lax
from jax.nn import initializers
import jax.numpy as jnp
import numpy as np
from flax.linen.module import merge_param
import flax.linen as nn
from typing import Callable, Iterable, Optional, Tuple, Union, Any
import functools
import scipy.linalg
import pickle
from . import utils
import warnings
PRNGKey = Any
Array = Any
Shape = Tuple[int]
Dtype = Any
def fid_score(mu1, mu2, sigma1, sigma2, eps = 1e-6):
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = scipy.linalg.sqrtm(sigma1@sigma2, disp=False)
# Numerical error might give slight imaginary component
if jnp.iscomplexobj(covmean):
if not jnp.allclose(jnp.diagonal(covmean).imag, 0, atol=1e-3):
m = jnp.max(jnp.abs(covmean.imag))
warnings.warn("Imaginary component! max(im(sqrtm(sigma1@sigma))) = {}".format(m))
covmean = covmean.real
tr_covmean = jnp.trace(covmean)
if not jnp.isfinite(covmean).all():
tr_covmean = jnp.sum(jnp.sqrt(((jnp.diag(sigma1) * eps) * (jnp.diag(sigma2) * eps)) / (eps * eps)))
return float(diff.dot(diff) + jnp.trace(sigma1) + jnp.trace(sigma2) - 2 * tr_covmean)
class InceptionV3(nn.Module):
"""
InceptionV3 network.
Reference: https://arxiv.org/abs/1512.00567
Ported mostly from: https://github.com/pytorch/vision/blob/master/torchvision/models/inception.py
Attributes:
include_head (bool): If True, include classifier head.
num_classes (int): Number of classes.
pretrained (bool): If True, use pretrained weights.
transform_input (bool): If True, preprocesses the input according to the method with which it
was trained on ImageNet.
aux_logits (bool): If True, add an auxiliary branch that can improve training.
dtype (str): Data type.
"""
include_head: bool=False
num_classes: int=1000
pretrained: bool=False
transform_input: bool=False
aux_logits: bool=False
ckpt_path: str='https://www.dropbox.com/s/xt6zvlvt22dcwck/inception_v3_weights_fid.pickle?dl=1'
dtype: str='float32'
def setup(self):
if self.pretrained:
ckpt_file = utils.download(self.ckpt_path)
self.params_dict = pickle.load(open(ckpt_file, 'rb'))
self.num_classes_ = 1000
else:
self.params_dict = None
self.num_classes_ = self.num_classes
@nn.compact
def __call__(self, x, train=True, rng=jax.random.PRNGKey(0)):
"""
Args:
x (tensor): Input image, shape [B, H, W, C].
train (bool): If True, training mode.
rng (jax.random.PRNGKey): Random seed.
"""
x = self._transform_input(x)
x = BasicConv2d(out_channels=32,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'Conv2d_1a_3x3'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=32,
kernel_size=(3, 3),
params_dict=utils.get(self.params_dict, 'Conv2d_2a_3x3'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=64,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'Conv2d_2b_3x3'),
dtype=self.dtype)(x, train)
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
x = BasicConv2d(out_channels=80,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'Conv2d_3b_1x1'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=192,
kernel_size=(3, 3),
params_dict=utils.get(self.params_dict, 'Conv2d_4a_3x3'),
dtype=self.dtype)(x, train)
x = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
x = InceptionA(pool_features=32,
params_dict=utils.get(self.params_dict, 'Mixed_5b'),
dtype=self.dtype)(x, train)
x = InceptionA(pool_features=64,
params_dict=utils.get(self.params_dict, 'Mixed_5c'),
dtype=self.dtype)(x, train)
x = InceptionA(pool_features=64,
params_dict=utils.get(self.params_dict, 'Mixed_5d'),
dtype=self.dtype)(x, train)
x = InceptionB(params_dict=utils.get(self.params_dict, 'Mixed_6a'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=128,
params_dict=utils.get(self.params_dict, 'Mixed_6b'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=160,
params_dict=utils.get(self.params_dict, 'Mixed_6c'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=160,
params_dict=utils.get(self.params_dict, 'Mixed_6d'),
dtype=self.dtype)(x, train)
x = InceptionC(channels_7x7=192,
params_dict=utils.get(self.params_dict, 'Mixed_6e'),
dtype=self.dtype)(x, train)
aux = None
if self.aux_logits and train:
aux = InceptionAux(num_classes=self.num_classes_,
params_dict=utils.get(self.params_dict, 'AuxLogits'),
dtype=self.dtype)(x, train)
x = InceptionD(params_dict=utils.get(self.params_dict, 'Mixed_7a'),
dtype=self.dtype)(x, train)
x = InceptionE(avg_pool, params_dict=utils.get(self.params_dict, 'Mixed_7b'),
dtype=self.dtype)(x, train)
# Following the implementation by @mseitzer, we use max pooling instead
# of average pooling here.
# See: https://github.com/mseitzer/pytorch-fid/blob/master/src/pytorch_fid/inception.py#L320
x = InceptionE(nn.max_pool, params_dict=utils.get(self.params_dict, 'Mixed_7c'),
dtype=self.dtype)(x, train)
x = jnp.mean(x, axis=(1, 2), keepdims=True)
if not self.include_head:
return x
x = nn.Dropout(rate=0.5)(x, deterministic=not train, rng=rng)
x = jnp.reshape(x, newshape=(x.shape[0], -1))
x = Dense(features=self.num_classes_,
params_dict=utils.get(self.params_dict, 'fc'),
dtype=self.dtype)(x)
if self.aux_logits:
return x, aux
return x
def _transform_input(self, x):
if self.transform_input:
x_ch0 = jnp.expand_dims(x[..., 0], axis=-1) * (0.229 / 0.5) + (0.485 - 0.5) / 0.5
x_ch1 = jnp.expand_dims(x[..., 1], axis=-1) * (0.224 / 0.5) + (0.456 - 0.5) / 0.5
x_ch2 = jnp.expand_dims(x[..., 2], axis=-1) * (0.225 / 0.5) + (0.406 - 0.5) / 0.5
x = jnp.concatenate((x_ch0, x_ch1, x_ch2), axis=-1)
return x
class Dense(nn.Module):
features: int
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x):
x = nn.Dense(features=self.features,
kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['kernel']),
bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['bias']))(x)
return x
class BasicConv2d(nn.Module):
out_channels: int
kernel_size: Union[int, Iterable[int]]=(3, 3)
strides: Optional[Iterable[int]]=(1, 1)
padding: Union[str, Iterable[Tuple[int, int]]]='valid'
use_bias: bool=False
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
x = nn.Conv(features=self.out_channels,
kernel_size=self.kernel_size,
strides=self.strides,
padding=self.padding,
use_bias=self.use_bias,
kernel_init=self.kernel_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['kernel']),
bias_init=self.bias_init if self.params_dict is None else lambda *_ : jnp.array(self.params_dict['conv']['bias']),
dtype=self.dtype)(x)
if self.params_dict is None:
x = BatchNorm(epsilon=0.001,
momentum=0.1,
use_running_average=not train,
dtype=self.dtype)(x)
else:
x = BatchNorm(epsilon=0.001,
momentum=0.1,
bias_init=lambda *_ : jnp.array(self.params_dict['bn']['bias']),
scale_init=lambda *_ : jnp.array(self.params_dict['bn']['scale']),
mean_init=lambda *_ : jnp.array(self.params_dict['bn']['mean']),
var_init=lambda *_ : jnp.array(self.params_dict['bn']['var']),
use_running_average=not train,
dtype=self.dtype)(x)
x = jax.nn.relu(x)
return x
class InceptionA(nn.Module):
pool_features: int
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch5x5 = BasicConv2d(out_channels=48,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch5x5_1'),
dtype=self.dtype)(x, train)
branch5x5 = BasicConv2d(out_channels=64,
kernel_size=(5, 5),
padding=((2, 2), (2, 2)),
params_dict=utils.get(self.params_dict, 'branch5x5_2'),
dtype=self.dtype)(branch5x5, train)
branch3x3dbl = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'),
dtype=self.dtype)(branch3x3dbl, train)
branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=self.pool_features,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch5x5, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionB(nn.Module):
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch3x3 = BasicConv2d(out_channels=384,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=64,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = BasicConv2d(out_channels=96,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3'),
dtype=self.dtype)(branch3x3dbl, train)
branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
output = jnp.concatenate((branch3x3, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionC(nn.Module):
channels_7x7: int
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch7x7 = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7_1'),
dtype=self.dtype)(x, train)
branch7x7 = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7_2'),
dtype=self.dtype)(branch7x7, train)
branch7x7 = BasicConv2d(out_channels=192,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7_3'),
dtype=self.dtype)(branch7x7, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_1'),
dtype=self.dtype)(x, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_2'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_3'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_4'),
dtype=self.dtype)(branch7x7dbl, train)
branch7x7dbl = BasicConv2d(out_channels=self.channels_7x7,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7dbl_5'),
dtype=self.dtype)(branch7x7dbl, train)
branch_pool = avg_pool(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch7x7, branch7x7dbl, branch_pool), axis=-1)
return output
class InceptionD(nn.Module):
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch3x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3_1'),
dtype=self.dtype)(x, train)
branch3x3 = BasicConv2d(out_channels=320,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch3x3_2'),
dtype=self.dtype)(branch3x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch7x7x3_1'),
dtype=self.dtype)(x, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(1, 7),
padding=((0, 0), (3, 3)),
params_dict=utils.get(self.params_dict, 'branch7x7x3_2'),
dtype=self.dtype)(branch7x7x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(7, 1),
padding=((3, 3), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch7x7x3_3'),
dtype=self.dtype)(branch7x7x3, train)
branch7x7x3 = BasicConv2d(out_channels=192,
kernel_size=(3, 3),
strides=(2, 2),
params_dict=utils.get(self.params_dict, 'branch7x7x3_4'),
dtype=self.dtype)(branch7x7x3, train)
branch_pool = nn.max_pool(x, window_shape=(3, 3), strides=(2, 2))
output = jnp.concatenate((branch3x3, branch7x7x3, branch_pool), axis=-1)
return output
class InceptionE(nn.Module):
pooling: Callable
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
branch1x1 = BasicConv2d(out_channels=320,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch1x1'),
dtype=self.dtype)(x, train)
branch3x3 = BasicConv2d(out_channels=384,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3_1'),
dtype=self.dtype)(x, train)
branch3x3_a = BasicConv2d(out_channels=384,
kernel_size=(1, 3),
padding=((0, 0), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3_2a'),
dtype=self.dtype)(branch3x3, train)
branch3x3_b = BasicConv2d(out_channels=384,
kernel_size=(3, 1),
padding=((1, 1), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch3x3_2b'),
dtype=self.dtype)(branch3x3, train)
branch3x3 = jnp.concatenate((branch3x3_a, branch3x3_b), axis=-1)
branch3x3dbl = BasicConv2d(out_channels=448,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_1'),
dtype=self.dtype)(x, train)
branch3x3dbl = BasicConv2d(out_channels=384,
kernel_size=(3, 3),
padding=((1, 1), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_2'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl_a = BasicConv2d(out_channels=384,
kernel_size=(1, 3),
padding=((0, 0), (1, 1)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3a'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl_b = BasicConv2d(out_channels=384,
kernel_size=(3, 1),
padding=((1, 1), (0, 0)),
params_dict=utils.get(self.params_dict, 'branch3x3dbl_3b'),
dtype=self.dtype)(branch3x3dbl, train)
branch3x3dbl = jnp.concatenate((branch3x3dbl_a, branch3x3dbl_b), axis=-1)
branch_pool = self.pooling(x, window_shape=(3, 3), strides=(1, 1), padding=((1, 1), (1, 1)))
branch_pool = BasicConv2d(out_channels=192,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'branch_pool'),
dtype=self.dtype)(branch_pool, train)
output = jnp.concatenate((branch1x1, branch3x3, branch3x3dbl, branch_pool), axis=-1)
return output
class InceptionAux(nn.Module):
num_classes: int
kernel_init: functools.partial=nn.initializers.lecun_normal()
bias_init: functools.partial=nn.initializers.zeros
params_dict: dict=None
dtype: str='float32'
@nn.compact
def __call__(self, x, train=True):
x = avg_pool(x, window_shape=(5, 5), strides=(3, 3))
x = BasicConv2d(out_channels=128,
kernel_size=(1, 1),
params_dict=utils.get(self.params_dict, 'conv0'),
dtype=self.dtype)(x, train)
x = BasicConv2d(out_channels=768,
kernel_size=(5, 5),
params_dict=utils.get(self.params_dict, 'conv1'),
dtype=self.dtype)(x, train)
x = jnp.mean(x, axis=(1, 2))
x = jnp.reshape(x, newshape=(x.shape[0], -1))
x = Dense(features=self.num_classes,
params_dict=utils.get(self.params_dict, 'fc'),
dtype=self.dtype)(x)
return x
def _absolute_dims(rank, dims):
return tuple([rank + dim if dim < 0 else dim for dim in dims])
class BatchNorm(nn.Module):
"""BatchNorm Module.
Taken from: https://github.com/google/flax/blob/master/flax/linen/normalization.py
Attributes:
use_running_average: if True, the statistics stored in batch_stats
will be used instead of computing the batch statistics on the input.
axis: the feature or non-batch axis of the input.
momentum: decay rate for the exponential moving average of the batch statistics.
epsilon: a small float added to variance to avoid dividing by zero.
dtype: the dtype of the computation (default: float32).
use_bias: if True, bias (beta) is added.
use_scale: if True, multiply by scale (gamma).
When the next layer is linear (also e.g. nn.relu), this can be disabled
since the scaling will be done by the next layer.
bias_init: initializer for bias, by default, zero.
scale_init: initializer for scale, by default, one.
axis_name: the axis name used to combine batch statistics from multiple
devices. See `jax.pmap` for a description of axis names (default: None).
axis_index_groups: groups of axis indices within that named axis
representing subsets of devices to reduce over (default: None). For
example, `[[0, 1], [2, 3]]` would independently batch-normalize over
the examples on the first two and last two devices. See `jax.lax.psum`
for more details.
"""
use_running_average: Optional[bool] = None
axis: int = -1
momentum: float = 0.99
epsilon: float = 1e-5
dtype: Dtype = jnp.float32
use_bias: bool = True
use_scale: bool = True
bias_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.zeros
scale_init: Callable[[PRNGKey, Shape, Dtype], Array] = initializers.ones
mean_init: Callable[[Shape], Array] = lambda s: jnp.zeros(s, jnp.float32)
var_init: Callable[[Shape], Array] = lambda s: jnp.ones(s, jnp.float32)
axis_name: Optional[str] = None
axis_index_groups: Any = None
@nn.compact
def __call__(self, x, use_running_average: Optional[bool] = None):
"""Normalizes the input using batch statistics.
NOTE:
During initialization (when parameters are mutable) the running average
of the batch statistics will not be updated. Therefore, the inputs
fed during initialization don't need to match that of the actual input
distribution and the reduction axis (set with `axis_name`) does not have
to exist.
Args:
x: the input to be normalized.
use_running_average: if true, the statistics stored in batch_stats
will be used instead of computing the batch statistics on the input.
Returns:
Normalized inputs (the same shape as inputs).
"""
use_running_average = merge_param(
'use_running_average', self.use_running_average, use_running_average)
x = jnp.asarray(x, jnp.float32)
axis = self.axis if isinstance(self.axis, tuple) else (self.axis,)
axis = _absolute_dims(x.ndim, axis)
feature_shape = tuple(d if i in axis else 1 for i, d in enumerate(x.shape))
reduced_feature_shape = tuple(d for i, d in enumerate(x.shape) if i in axis)
reduction_axis = tuple(i for i in range(x.ndim) if i not in axis)
# see NOTE above on initialization behavior
initializing = self.is_mutable_collection('params')
ra_mean = self.variable('batch_stats', 'mean',
self.mean_init,
reduced_feature_shape)
ra_var = self.variable('batch_stats', 'var',
self.var_init,
reduced_feature_shape)
if use_running_average:
mean, var = ra_mean.value, ra_var.value
else:
mean = jnp.mean(x, axis=reduction_axis, keepdims=False)
mean2 = jnp.mean(lax.square(x), axis=reduction_axis, keepdims=False)
if self.axis_name is not None and not initializing:
concatenated_mean = jnp.concatenate([mean, mean2])
mean, mean2 = jnp.split(
lax.pmean(
concatenated_mean,
axis_name=self.axis_name,
axis_index_groups=self.axis_index_groups), 2)
var = mean2 - lax.square(mean)
if not initializing:
ra_mean.value = self.momentum * ra_mean.value + (1 - self.momentum) * mean
ra_var.value = self.momentum * ra_var.value + (1 - self.momentum) * var
y = x - mean.reshape(feature_shape)
mul = lax.rsqrt(var + self.epsilon)
if self.use_scale:
scale = self.param('scale',
self.scale_init,
reduced_feature_shape).reshape(feature_shape)
mul = mul * scale
y = y * mul
if self.use_bias:
bias = self.param('bias',
self.bias_init,
reduced_feature_shape).reshape(feature_shape)
y = y + bias
return jnp.asarray(y, self.dtype)
def pool(inputs, init, reduce_fn, window_shape, strides, padding):
"""
Taken from: https://github.com/google/flax/blob/main/flax/linen/pooling.py
Helper function to define pooling functions.
Pooling functions are implemented using the ReduceWindow XLA op.
NOTE: Be aware that pooling is not generally differentiable.
That means providing a reduce_fn that is differentiable does not imply
that pool is differentiable.
Args:
inputs: input data with dimensions (batch, window dims..., features).
init: the initial value for the reduction
reduce_fn: a reduce function of the form `(T, T) -> T`.
window_shape: a shape tuple defining the window to reduce over.
strides: a sequence of `n` integers, representing the inter-window
strides.
padding: either the string `'SAME'`, the string `'VALID'`, or a sequence
of `n` `(low, high)` integer pairs that give the padding to apply before
and after each spatial dimension.
Returns:
The output of the reduction for each window slice.
"""
strides = strides or (1,) * len(window_shape)
assert len(window_shape) == len(strides), (
f"len({window_shape}) == len({strides})")
strides = (1,) + strides + (1,)
dims = (1,) + window_shape + (1,)
is_single_input = False
if inputs.ndim == len(dims) - 1:
# add singleton batch dimension because lax.reduce_window always
# needs a batch dimension.
inputs = inputs[None]
is_single_input = True
assert inputs.ndim == len(dims), f"len({inputs.shape}) != len({dims})"
if not isinstance(padding, str):
padding = tuple(map(tuple, padding))
assert(len(padding) == len(window_shape)), (
f"padding {padding} must specify pads for same number of dims as "
f"window_shape {window_shape}")
assert(all([len(x) == 2 for x in padding])), (
f"each entry in padding {padding} must be length 2")
padding = ((0,0),) + padding + ((0,0),)
y = jax.lax.reduce_window(inputs, init, reduce_fn, dims, strides, padding)
if is_single_input:
y = jnp.squeeze(y, axis=0)
return y
def avg_pool(inputs, window_shape, strides=None, padding='VALID'):
"""
Pools the input by taking the average over a window.
In comparison to flax.linen.avg_pool, this pooling operation does not
consider the padded zero's for the average computation.
Args:
inputs: input data with dimensions (batch, window dims..., features).
window_shape: a shape tuple defining the window to reduce over.
strides: a sequence of `n` integers, representing the inter-window
strides (default: `(1, ..., 1)`).
padding: either the string `'SAME'`, the string `'VALID'`, or a sequence
of `n` `(low, high)` integer pairs that give the padding to apply before
and after each spatial dimension (default: `'VALID'`).
Returns:
The average for each window slice.
"""
assert inputs.ndim == 4
assert len(window_shape) == 2
y = pool(inputs, 0., jax.lax.add, window_shape, strides, padding)
ones = jnp.ones(shape=(1, inputs.shape[1], inputs.shape[2], 1)).astype(inputs.dtype)
counts = jax.lax.conv_general_dilated(ones,
jnp.expand_dims(jnp.ones(window_shape).astype(inputs.dtype), axis=(-2, -1)),
window_strides=(1, 1),
padding=((1, 1), (1, 1)),
dimension_numbers=nn.linear._conv_dimension_numbers(ones.shape),
feature_group_count=1)
y = y / counts
return y