forked from imethanlee/TSP-ACS-visualization
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
262 lines (220 loc) · 8.46 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
from TSP import *
import tkinter as tk
from tkinter import ttk
import matplotlib.pyplot as plt
from PIL import Image, ImageTk
import threading
import numpy as np
if __name__ == '__main__':
# 线程设置
lock = threading.RLock()
running = False
# 结果数据
avg_list = []
# UI字体大小
font_size = 10
font_name = "微软雅黑"
def run():
problem = file.get() + ".txt"
max_gen = gen.get()
test_times = times.get()
print(problem, max_gen, test_times)
# 开始 ACS
break_now.set(0)
for i in range(test_times):
avg_list.append([])
my_acs = ACS(city_name=problem)
my_acs.init()
my_acs.init()
for j in range(max_gen):
if break_now.get() == 0:
my_acs.path_construct()
my_acs.pheromone_update()
cgen.set(j + 1)
draw_path(my_acs)
canvas_path.update()
canvas_curve.update()
minavg.set(my_acs.best.dis)
avg_list[i].append(my_acs.best.dis)
if break_now.get() == 0:
draw_curve()
btn_stop.config(state=tk.DISABLED)
btn_start.config(state=tk.NORMAL)
def draw_path(acs):
global im_path
x_seq = []
y_seq = []
for i in range(acs.num_city):
x_seq.append(acs.city.x_list[acs.best.path[i]])
y_seq.append(acs.city.y_list[acs.best.path[i]])
x_seq.append(acs.city.x_list[acs.best.path[0]])
y_seq.append(acs.city.y_list[acs.best.path[0]])
plt.figure(figsize=(5.5, 5.5))
plt.plot(x_seq, y_seq, color='blue', linewidth='1')
plt.scatter(x_seq, y_seq,color='black')
for a, b in zip(x_seq, y_seq):
plt.text(a, b, (a, b), ha='center', va='bottom', fontsize=8)
plt.savefig("update_path.jpg")
plt.close("all")
a = Image.open("update_path.jpg")
im_path = ImageTk.PhotoImage(a)
canvas_path.delete("all")
canvas_path.create_image((260, 260), image=im_path)
def draw_curve():
global im_curve
avg_x = []
avg_y = []
for i in range(gen.get()):
avg_x.append(i)
for i in range(gen.get()):
a = 0.0
for j in range(times.get()):
a = a + avg_list[j][i]
avg_y.append(a / times.get())
plt.figure(figsize=(5.5, 5.5))
l, = plt.plot(avg_x, avg_y, linewidth='1', color='red')
plt.legend(handles=[l], labels=['Average Minimum Distance'])
plt.savefig("result_curve.jpg")
plt.close("all")
a = Image.open("result_curve.jpg")
im_curve = ImageTk.PhotoImage(a)
canvas_curve.delete("all")
canvas_curve.create_image((270, 260), image=im_curve)
# 计算标准差
if times.get() > 1:
dev_list = []
for i in range(times.get()):
dev_list.append(avg_list[i][gen.get() - 1])
dev_arr = np.array(dev_list)
stddev.set(np.std(dev_arr, ddof=1))
avg_list.clear()
def command_start():
btn_start.config(state=tk.DISABLED)
btn_stop.config(state=tk.NORMAL)
lock.acquire()
lock.release()
run()
def command_stop():
lock.acquire()
lock.release()
btn_start.config(state=tk.NORMAL)
btn_stop.config(state=tk.DISABLED)
break_now.set(1)
avg_list.clear()
def command_clear():
global image_path, im_path, image_curve, im_curve
image_path = Image.open("path_init.jpg")
im_path = ImageTk.PhotoImage(image_path)
canvas_path.create_image((260, 260), image=im_path)
image_curve = Image.open("curve_init.jpg")
im_curve = ImageTk.PhotoImage(image_curve)
canvas_curve.create_image((260, 260), image=im_curve)
minavg.set(0)
cgen.set(0)
stddev.set(0)
# 主窗口设计
window = tk.Tk()
window.title("What is the shortest path?")
window.geometry("1400x600+300+200")
# 立即停止变量
break_now = tk.BooleanVar()
# 测试数据Label
label_choose = tk.Label(text="Choose your problem", font=(font_name, font_size))
label_choose.place(x=40, y=10)
# 测试数据下拉栏
file = tk.StringVar()
file_chosen = ttk.Combobox(window, width=21, textvariable=file)
file_chosen['values'] = ('Oliver30', 'Eil51', 'Eil76', 'kroa100', 'myTest') # 设置下拉列表的值
file_chosen.current(0)
file_chosen.place(x=40, y=40)
# 进化代数label
label_gen = tk.Label(text="Max Generation", font=(font_name, font_size))
label_gen.place(x=40, y=70)
# 进化代数下拉栏
gen = tk.IntVar()
gen_chosen = ttk.Combobox(window, width=21, textvariable=gen)
gen_chosen['values'] = (50, 100, 500, 1000, 2000, 5000, 10000)
gen_chosen.current(0)
gen_chosen.place(x=40, y=100)
# 试验次数label
label_times = tk.Label(text="Test Times", font=(font_name, font_size))
label_times.place(x=40, y=130)
# 试验次数下拉栏
times = tk.IntVar()
times_chosen = ttk.Combobox(window, width=21, textvariable=times)
times_chosen['values'] = (1, 5, 10, 20, 30, 50)
times_chosen.current(0)
times_chosen.place(x=40, y=160)
# 开始按钮
btn_start = tk.Button(text="Let's find out !", font=(font_name, font_size + 4), bg='grey35', fg='yellow',
command=lambda: command_start())
btn_start.place(x=40, y=200, width=170, height=50)
# 结果label
label_result = tk.Label(text="Result:", font=(font_name, font_size))
label_result.place(x=40, y=270)
# 最小距离label
label_minavg = tk.Label(text="Minimum Distance:", font=(font_name, font_size))
label_minavg.place(x=40, y=300)
# 最小距离Entry
minavg = tk.StringVar()
minavg.set(0)
entry_minavg = tk.Entry(textvariable=minavg, width=24)
entry_minavg.place(x=40, y=330)
# 标准差label
label_stdvar = tk.Label(text="Standard Deviation:", font=(font_name, font_size))
label_stdvar.place(x=40, y=360)
# 标准差Entry
stddev = tk.StringVar()
stddev.set(0)
entry_stddev = tk.Entry(textvariable=stddev, width=24)
entry_stddev.place(x=40, y=390)
# 当前进化代数label1
label_gen = tk.Label(text="Current Generation:", font=(font_name, font_size))
label_gen.place(x=40, y=420)
# 当前进化代数label2
cgen = tk.IntVar()
cgen.set(0)
label_cgen = tk.Label(textvariable=cgen, font=("宋体", 30))
label_cgen.place(x=110, y=445)
# 停止Button
btn_stop = tk.Button(text="Stop it!", font=(font_name, font_size + 4), bg='grey35', fg='yellow',
command=lambda: command_stop())
btn_stop.place(x=40, y=500, width=80, height=50)
btn_stop.config(state=tk.DISABLED)
# 清除Button
btn_clear = tk.Button(text="Clear", font=(font_name, font_size + 4), bg='grey35', fg='yellow',
command=lambda: command_clear())
btn_clear.place(x=130, y=500, width=80, height=50)
# 路径label
label_path = tk.Label(text="Current Optimal Path:", font=(font_name, font_size + 4))
label_path.place(x=250, y=10)
# 路径画布
canvas_path = tk.Canvas(window, bg='grey', width=520, height=520)
canvas_path.place(x=250, y=40)
# 进化曲线label
label_curve = tk.Label(text="Evolution curve:", font=(font_name, font_size + 4))
label_curve.place(x=825, y=10)
# 进化曲线画布
canvas_curve = tk.Canvas(window, bg='grey', width=520, height=520)
canvas_curve.place(x=825, y=40)
# 画布初始化
plt.figure(figsize=(5.8, 5.8))
plt.plot([1, 1, 4, 7, 1, 7, 7], [1, 5, 9, 5, 5, 5, 1])
plt.plot([15, 9, 9, 15], [1, 1, 9, 9])
plt.plot([17, 23, 23, 17, 17, 23], [1, 1, 5, 5, 9, 9])
plt.savefig("path_init.jpg")
plt.close("all")
image_path = Image.open("path_init.jpg")
im_path = ImageTk.PhotoImage(image_path)
canvas_path.create_image((260, 260), image=im_path)
plt.figure(figsize=(5.8, 5.8))
plt.plot([1, 7, 4, 4], [9, 9, 9, 1])
plt.plot([9, 15, 15, 9, 9, 15], [1, 1, 5, 5, 9, 9])
plt.plot([17, 17, 23, 23, 17], [1, 9, 9, 5, 5])
plt.savefig("curve_init.jpg")
plt.close("all")
image_curve = Image.open("curve_init.jpg")
im_curve = ImageTk.PhotoImage(image_curve)
canvas_curve.create_image((260, 260), image=im_curve)
# 必须放在最后的mainloop
window.mainloop()