-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtloss.py
116 lines (101 loc) · 4.12 KB
/
tloss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
# Copyright 2023 University of Basel and Lucerne University of Applied Sciences and Arts Authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
__author__ = "Alvaro Gonzalez-Jimenez"
__maintainer__ = "Alvaro Gonzalez-Jimenez"
__email__ = "[email protected]"
__license__ = "Apache License, Version 2.0"
__date__ = "2023-07-25"
import numpy as np
import torch
import torch.nn as nn
# NOTE: The mismatch between the paper and the code is because we offer a more general
# formulation where Sigma is an arbitrary diagonal matrix.
# For a detailed explanation, please refer to: https://github.com/Digital-Dermatology/t-loss/issues/2
class TLoss(nn.Module):
def __init__(
self,
config,
nu: float = 1.0,
epsilon: float = 1e-8,
reduction: str = "mean",
):
"""
Implementation of the TLoss.
Args:
config: Configuration object for the loss.
nu (float): Value of nu.
epsilon (float): Value of epsilon.
reduction (str): Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'.
'none': no reduction will be applied,
'mean': the sum of the output will be divided by the number of elements in the output,
'sum': the output will be summed.
"""
super().__init__()
self.config = config
self.D = torch.tensor(
(self.config.data.image_size * self.config.data.image_size),
dtype=torch.float,
device=config.device,
)
self.lambdas = torch.ones(
(self.config.data.image_size, self.config.data.image_size),
dtype=torch.float,
device=config.device,
)
self.nu = nn.Parameter(
torch.tensor(nu, dtype=torch.float, device=config.device)
)
self.epsilon = torch.tensor(epsilon, dtype=torch.float, device=config.device)
self.reduction = reduction
def forward(
self, input_tensor: torch.Tensor, target_tensor: torch.Tensor
) -> torch.Tensor:
"""
Args:
input_tensor (torch.Tensor): Model's prediction, size (B x W x H).
target_tensor (torch.Tensor): Ground truth, size (B x W x H).
Returns:
torch.Tensor: Total loss value.
"""
delta_i = input_tensor - target_tensor
sum_nu_epsilon = torch.exp(self.nu) + self.epsilon
first_term = -torch.lgamma((sum_nu_epsilon + self.D) / 2)
second_term = torch.lgamma(sum_nu_epsilon / 2)
third_term = -0.5 * torch.sum(self.lambdas + self.epsilon)
fourth_term = (self.D / 2) * torch.log(torch.tensor(np.pi))
fifth_term = (self.D / 2) * (self.nu + self.epsilon)
delta_squared = torch.pow(delta_i, 2)
lambdas_exp = torch.exp(self.lambdas + self.epsilon)
numerator = delta_squared * lambdas_exp
numerator = torch.sum(numerator, dim=(1, 2))
fraction = numerator / sum_nu_epsilon
sixth_term = ((sum_nu_epsilon + self.D) / 2) * torch.log(1 + fraction)
total_losses = (
first_term
+ second_term
+ third_term
+ fourth_term
+ fifth_term
+ sixth_term
)
if self.reduction == "mean":
return total_losses.mean()
elif self.reduction == "sum":
return total_losses.sum()
elif self.reduction == "none":
return total_losses
else:
raise ValueError(
f"The reduction method '{self.reduction}' is not implemented."
)