-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexp_cond_conv.py
51 lines (40 loc) · 1.31 KB
/
exp_cond_conv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from dfme.train import train
from models.resnet import resnet34
from models.cond_conv import cond_mobilenetv2
from models.gan import GeneratorA
import torch
class ARGS:
epoch_iter = 50
g_iter = 1
s_iter = 5
num_classes = 10
dataset = 'cifar10'
data_root = './data/'
image_size = 32
image_channels = 3
batch_size = 256
student_lr = 0.1
generator_lr = 1e-4
weight_decay = 5e-4
steps = [0.1, 0.3, 0.5]
momentum = 0.9
random_noise_size = 256
grad_epsilon = 1e-3
grad_m = 1
current_budget = 0
cost_per_iteration = 0 # will be calculated within the program
query_budget = 10e6
seed = 4
generator_activation = torch.tanh
teacher = resnet34()
teacher_name = 'resnet34'
student = cond_mobilenetv2(num_classes=num_classes)
student_name = 'cond_conv_mobilenetv2'
generator = GeneratorA(nz=random_noise_size, nc=image_channels, img_size=image_size, activation=generator_activation)
teacher_load_path = './checkpoints/teacher/resnet34.pt'
student_load_path = './checkpoints/student/cond_conv_mobilenetv2_resnet34'
generator_load_path = './checkpoints/generator/cond_conv_mobilenetv2_resnet34'
student_save_folder = './checkpoints/student/'
generator_save_folder = './checkpoints/generator'
args = ARGS()
train(args)