forked from SoftWiser-group/CFDebug
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
363 lines (320 loc) · 16.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import argparse
import os
from utils import *
from copy import deepcopy
from multiprocessing import Process
from numpy.linalg import inv
from scipy import sparse
import logging
import implicit
logging.basicConfig()
logging.getLogger().setLevel(logging.INFO)
# hyperparameters
parser = argparse.ArgumentParser(description="CFDebug")
parser.add_argument("--dataset", type=str, default="movielens", help="dataset")
parser.add_argument("--delim", type=str, default="::", help="delimiter of each line in the dataset file")
parser.add_argument("--fold", type=int, default=4, help="# of fold to split the data")
parser.add_argument("--factor", type=int, default=10, help="# of dimension parameter of the CF model")
parser.add_argument("--lambda_u", type=float, default=0.1, help="regularization parameter lambda_u of the CF model")
parser.add_argument("--lambda_v", type=float, default=0.1, help="regularization parameter lambda_v of the CF model")
parser.add_argument("--als_iter", type=int, default=15, help="# of iterations for ALS training")
parser.add_argument("--debug_iter", type=int, default=20, help="# of iterations in the debugging stage")
parser.add_argument("--debug_lr", type=float, default=0.05, help="learning rate in the debugging stage")
parser.add_argument("--retrain", type=str, default="full", help="the retraining mode in the debugging stage: full/inc")
parser.add_argument("--process", type=int, default=4, help="# of processes in the debugging stage")
parser.add_argument("--mode", type=str, default="debug", help="debug/test")
parser.add_argument("--implicit", action='store_true', help="use implicit ALS")
parser.add_argument("--alpha", type=int, default=1, help="confidence scaling for implicit feedback dataset")
parser.add_argument("--als_threads", type=int, default=6, help="num threads during implicit ALS fit")
args = parser.parse_args()
def partition(ratings, seed, fold):
np.random.RandomState(seed).shuffle(ratings)
test_size = int(0.2 * ratings.shape[0])
test_data = ratings[:test_size]
val_data = dict()
fold_size = (ratings.shape[0] - test_size) // fold
for i in range(fold - 1):
val_data[i + 1] = ratings[test_size + i * fold_size: test_size + (i + 1) * fold_size]
val_data[fold] = ratings[test_size + (fold - 1) * fold_size:]
return val_data, test_data
def data_split(data_path, args):
fold = args.fold
ratings = load_data(data_path, args)
n_users = int(max(ratings[:, 0]) + 1)
n_items = int(max(ratings[:, 1]) + 1)
max_rating = max(ratings[:, 2])
min_rating = min(ratings[:, 2])
val_data, test_data = partition(ratings, 0, fold)
lambda_dict = dict()
for i in range(fold):
if i == 0:
lambda_dict[1] = deepcopy(val_data[2])
for j in range(3, fold + 1):
lambda_dict[1] = np.vstack((lambda_dict[1], val_data[j]))
else:
lambda_dict[i + 1] = deepcopy(val_data[1])
for j in range(2, i + 1):
lambda_dict[i + 1] = np.vstack((lambda_dict[i + 1], val_data[j]))
for j in range(i + 2, fold + 1):
lambda_dict[i + 1] = np.vstack((lambda_dict[i + 1], val_data[j]))
zipped_index_dict = dict()
for i in range(fold):
zipped_index_dict[i + 1] = [(int(_[0]), int(_[1])) for _ in lambda_dict[i + 1]]
train_csr_dict = dict()
for i in range(fold):
train_csr_dict[i + 1] = build_user_item_matrix(lambda_dict[i + 1], n_users, n_items)
val_csr_dict = dict()
for i in range(fold):
val_csr_dict[i + 1] = build_user_item_matrix(val_data[i + 1], n_users, n_items)
test_csr = build_user_item_matrix(test_data, n_users, n_items)
return train_csr_dict, val_csr_dict, test_csr, zipped_index_dict, max_rating, min_rating
def cf_ridge_regression(csr_matrix, reg_lambda, fixed_feature, update_feature):
n_feature = fixed_feature.shape[1]
for i in range(csr_matrix.shape[0]):
_, idx = csr_matrix[i, :].nonzero()
valid_feature = fixed_feature.take(idx, axis=0)
ratings = csr_matrix[i, idx].todense()
A_i = np.dot(valid_feature.T, valid_feature) + reg_lambda * np.eye(n_feature)
V_i = np.dot(valid_feature.T, ratings.T)
update_feature[i, :] = np.squeeze(np.dot(inv(A_i), V_i))
def ALS(train_csr, args, n_iters, init_user_features=None, init_item_features=None):
if args.implicit:
logging.info('Implicit ALS, alpha {} max rating {}'.format(args.alpha, train_csr.data.max()))
model = implicit.als.AlternatingLeastSquares(factors=args.factor, iterations=n_iters, num_threads=args.als_threads,
regularization=max(args.lambda_u, args.lambda_v),
random_state=0)
model.fit(train_csr.T, show_progress=False)
return model.user_factors, model.item_factors
else:
user_features = 0.1 * np.random.RandomState(seed=0).rand(train_csr.shape[0], args.factor)
item_features = 0.1 * np.random.RandomState(seed=0).rand(train_csr.shape[1], args.factor)
if init_user_features is not None:
user_features = init_user_features
if init_item_features is not None:
item_features = init_item_features
train_csr_transpose = train_csr.T.tocsr()
for iteration in range(n_iters):
logging.info('Explicit ALS iteration {}'.format(iteration))
cf_ridge_regression(train_csr, args.lambda_u, item_features, user_features)
cf_ridge_regression(train_csr_transpose, args.lambda_v, user_features, item_features)
return user_features, item_features
def grad_calc(train_csr, val_csr, zipped_index, user_features, item_features, args):
n_users = train_csr.shape[0]
n_items = train_csr.shape[1]
grad_r_user = np.zeros(shape=user_features.shape, dtype=np.float)
grad_r_item = np.zeros(shape=item_features.shape, dtype=np.float)
val_coo = val_csr.tocoo()
pred_val = np.dot(user_features, item_features.T)
for i, j, v in zip(val_coo.row, val_coo.col, val_coo.data):
loss = 2 * (pred_val[i, j] - v)
grad_r_user[i] += loss * item_features[j]
grad_r_item[j] += loss * user_features[i]
grad_user_m = np.zeros(shape=(train_csr.nnz, args.factor))
grad_user_dict = {}
cnt = 0
for i in range(n_users):
_, item_idx = train_csr[i, :].nonzero()
item_feat = item_features.take(item_idx, axis=0)
A = np.eye(args.factor, dtype=np.float) * args.lambda_u + np.dot(item_feat.T, item_feat)
grad_user_m_i = np.dot(item_features, inv(A))
for i_idx in item_idx:
tup = (i, i_idx)
grad_user_dict[tup] = cnt
grad_user_m[cnt] = grad_user_m_i[i_idx][:]
cnt += 1
train_csc = train_csr.tocsc()
grad_item_m = np.zeros(shape=(train_csc.nnz, args.factor))
grad_item_dict = {}
cnt = 0
for i in range(n_items):
user_idx, _ = train_csc[:, i].nonzero()
user_feat = user_features.take(user_idx, axis=0)
A = np.eye(args.factor, dtype=np.float) * args.lambda_v + np.dot(user_feat.T, user_feat)
grad_item_m_i = np.dot(user_features, inv(A))
for u_idx in user_idx:
tup = (i, u_idx)
grad_item_dict[tup] = cnt
grad_item_m[cnt] = grad_item_m_i[u_idx][:]
cnt += 1
row = [i for i, j in zipped_index]
col = [j for i, j in zipped_index]
data = [(np.dot(grad_r_user[i], grad_user_m[grad_user_dict[(i, j)]].T)
+ np.dot(grad_r_item[j], grad_item_m[grad_item_dict[(j, i)]].T))
for i, j in zipped_index]
return sparse.coo_matrix((data, (row, col)), shape=(n_users, n_items)).tocsr()
def grad_calc_implicit(train_csr, val_csr, zipped_index, user_features, item_features, args):
n_users = train_csr.shape[0]
n_items = train_csr.shape[1]
pred_val = np.dot(user_features, item_features.T)
confidence_val_dense = val_csr.toarray()
confidence_train_dense = train_csr.toarray()
preference_val_dense = confidence_val_dense.copy()
preference_val_dense[preference_val_dense > 0] = 1
preference_train_dense = confidence_train_dense.copy()
preference_train_dense[preference_train_dense > 0] = 1
grad_r_user, grad_r_item = loss_d_emb(confidence_val_dense,
preference_val_dense,
pred_val,
user_features,
item_features)
grad_user_m = np.zeros(shape=(train_csr.nnz, args.factor))
grad_user_dict = {}
cnt = 0
VVT = np.dot(item_features.T, item_features)
UUT = np.dot(user_features.T, user_features)
for i in range(n_users):
_, item_idx = train_csr[i, :].nonzero()
grad_user_m_i = u_emb_d_c(args.lambda_u, confidence_train_dense, preference_train_dense, item_features, i, VVT)
for item_num, i_idx in enumerate(item_idx):
tup = (i, i_idx)
grad_user_dict[tup] = cnt
grad_user_m[cnt] = grad_user_m_i[item_num][:]
cnt += 1
train_csc = train_csr.tocsc()
grad_item_m = np.zeros(shape=(train_csc.nnz, args.factor))
grad_item_dict = {}
cnt = 0
for i in range(n_items):
user_idx, _ = train_csc[:, i].nonzero()
grad_item_m_i = i_emb_d_c(args.lambda_v, confidence_train_dense, preference_train_dense, user_features, i, UUT)
for user_num, u_idx in enumerate(user_idx):
tup = (i, u_idx)
grad_item_dict[tup] = cnt
grad_item_m[cnt] = grad_item_m_i[user_num][:]
cnt += 1
row = [i for i, j in zipped_index]
col = [j for i, j in zipped_index]
data = [(np.dot(grad_r_user[i], grad_user_m[grad_user_dict[(i, j)]].T)
+ np.dot(grad_r_item[j], grad_item_m[grad_item_dict[(j, i)]].T))
for i, j in zipped_index]
return sparse.coo_matrix((data, (row, col)), shape=(n_users, n_items)).tocsr()
def grad_update_loop(train_csr, val_csr, zipped_index, max_rating, min_rating, args):
user_feature, item_feature = ALS(train_csr, args, args.als_iter)
A_i = train_csr
C_i = sparse.csr_matrix(train_csr.shape)
user_feature_i = user_feature
item_feature_i = item_feature
for i in range(args.debug_iter):
if args.implicit:
gradients = grad_calc_implicit(A_i, val_csr, zipped_index, user_feature_i, item_feature_i, args)
else:
gradients = grad_calc(A_i, val_csr, zipped_index, user_feature_i, item_feature_i, args)
A_i = A_i - gradients * args.debug_lr
for _ in range(A_i.nnz):
A_i.data[_] = min(max_rating, max(min_rating, A_i.data[_]))
logging.info("A_i mean {}, min {}, max {}".format(A_i.data.mean(), A_i.data.min(), A_i.data.max()))
if args.retrain == "full":
user_feature_i, item_feature_i = ALS(A_i, args, args.als_iter)
if args.retrain == "inc":
user_feature_i, item_feature_i = ALS(A_i, args, 1, user_feature_i, item_feature_i)
C_i = A_i - train_csr
return C_i
def get_path(args, part_id):
path = f"./save/{args.dataset}/f{args.fold}_m{args.debug_iter}_lr{args.debug_lr}_part{part_id}_{args.retrain}"
if args.implicit:
path += '_implicit'
return path + '.txt'
def debug_process(train_csr, val_csr, zipped_index, max_rating, min_rating, id, args):
if args.implicit:
alpha = args.alpha
else:
alpha = 1
change_csr = grad_update_loop(alpha * train_csr, alpha * val_csr, zipped_index, max_rating, min_rating, args)
change_arr = change_csr.toarray()
path = get_path(args, id)
with open(path, "w+") as f:
for i, j in zipped_index:
print(i, j, change_arr[i, j], file=f, sep=',')
def aggregate_process(edit, sorted_edges, train_csr, test_csr, args, old_pred, max_rating, min_rating, percent):
if args.implicit:
alpha = args.alpha
else:
alpha = 1
cut_pos = int(len(sorted_edges) * percent * 0.01)
base_arr = train_csr.todense()
for i, j, v in sorted_edges[:cut_pos]:
if edit == "del":
base_arr[i, j] = 0
elif edit == "mod":
base_arr[i, j] += v
base_arr[i, j] = min(max_rating, max(min_rating, base_arr[i, j]))
user_feature, item_feature = ALS(alpha * sparse.csr_matrix(base_arr), args, args.als_iter)
new_pred = np.dot(user_feature, item_feature.T)
if args.implicit:
aucs = roc_auc_with_t_test(new_pred, old_pred, test_csr)
mse = RMSE_weighted_with_t_test(new_pred, old_pred, alpha * test_csr)
precisions = precision_at_10_with_t_test(new_pred, old_pred, test_csr)
else:
test_csr_binarized = test_csr.copy()
test_csr_binarized[test_csr_binarized <= 3] = 0
test_csr_binarized[test_csr_binarized > 3] = 1
aucs = roc_auc_with_t_test(new_pred, old_pred, test_csr_binarized)
mse = RMSE_with_ttest(new_pred, old_pred, test_csr)
precisions = precision_at_10_with_t_test(new_pred, old_pred, test_csr_binarized)
return aucs, mse, precisions
# main process
if __name__ == "__main__":
file_path = "./data/" + args.dataset + ".txt"
if not os.path.exists(f"./save/{args.dataset}"):
os.mkdir(f"./save/{args.dataset}")
if args.mode == "debug":
train_csr, val_csr, test_csr, zipped_index, max_rating, min_rating = data_split(file_path, args)
if args.implicit:
max_rating *= args.alpha
min_rating = 0
fold_id = 0
for rnd in range((args.fold + args.process - 1) // args.process):
processes = []
for i in range(fold_id, fold_id + args.process):
process = Process(target=debug_process, args=(train_csr[i + 1], val_csr[i + 1], zipped_index[i + 1],
max_rating, min_rating, i + 1, args))
processes.append(process)
for p in processes:
p.start()
for p in processes:
p.join()
fold_id += args.process
elif args.mode == "test":
train_csr, val_csr, test_csr, zipped_index, max_rating, min_rating = data_split(file_path, args)
if args.implicit:
max_rating *= args.alpha
min_rating = 0
alpha = args.alpha
else:
alpha = 1
test_train_csr = sparse.csr_matrix(test_csr.shape)
for i in range(args.fold):
test_train_csr = test_train_csr + val_csr[i + 1]
user_feature, item_feature = ALS(alpha * test_train_csr, args, args.als_iter)
old_pred = np.dot(user_feature, item_feature.T)
edge_dict = dict()
for i in range(1, args.fold + 1):
path = get_path(args, i)
for line in open(path):
l = line.strip().split(',')
x = int(l[0])
y = int(l[1])
r = float(l[2])
if (x, y) not in edge_dict.keys():
edge_dict[(x, y)] = r / (args.fold - 1)
else:
if edge_dict[(x, y)] * r > 0:
edge_dict[(x, y)] += r / (args.fold - 1)
else:
edge_dict[(x, y)] = 0
edges = [(key[0], key[1], values) for key, values in edge_dict.items()]
if args.implicit:
sorted_edges = sorted(edges, key=lambda _: _[2], reverse=False)
else:
sorted_edges = sorted(edges, key=lambda _: abs(_[2]), reverse=True)
for edit in ["del", "mod"]:
for percent in [0.1, 0.2, 0.5, 1, 2, 5, 10]:
aucs, mse, precisions = aggregate_process(edit, sorted_edges, test_train_csr,
test_csr, args, old_pred,
max_rating, min_rating, percent)
if args.implicit:
print(f"{edit} {percent}% training data, weighted rmse on test: {mse[1]} -> {mse[0]}, p_value: {mse[2]}")
else:
print(f"{edit} {percent}% training data, rmse on test: {mse[1]} -> {mse[0]}, p_value: {mse[2]}")
print(f"{edit} {percent}% training data, aucs on test: {aucs[1]} -> {aucs[0]}, p_value: {aucs[2]}")
print(f"{edit} {percent}% training data, p@10 on test: {precisions[1]} -> {precisions[0]}, p_value: {precisions[2]}")