diff --git a/GUI_cal_metrics.py b/GUI_cal_metrics.py
index 88a5133..2df36e3 100644
--- a/GUI_cal_metrics.py
+++ b/GUI_cal_metrics.py
@@ -63,6 +63,11 @@ def run_program():
args.append("--verbose")
if topclass_checkbox.value:
args.append("--topclass")
+ if hl_test_validation_checkbox.value:
+ if not any(metric in selected_metrics for metric in ["HL-H", "HL-C"]):
+ ui.notify("Error: HL test validation requires either HL-H or HL-C metric to be selected.", type="error")
+ return
+ args.append("--hl_test_validation")
command = ["python", "cal_metrics.py"] + args
print("Running command:", " ".join(command))
@@ -110,7 +115,6 @@ def clear_cache():
}
clearCache();
''')
- ui.notify('Browser cache cleared')
plot_image.clear()
plot_image.set_source(None) # Set the image source to None
@@ -159,6 +163,7 @@ async def pick_file() -> None:
value=1, step=1)
num_bins_input = ui.number(label='Number of Bins for ECE/MCE/HL Test',
value=10, min=2, step=1)
+ hl_test_validation_checkbox = ui.checkbox('HL Test Validation set', value=False)
with ui.column().classes('w-1/3 p-4'):
ui.label('Output Paths:')
diff --git a/cal_metrics.py b/cal_metrics.py
index d3842b3..dc19985 100755
--- a/cal_metrics.py
+++ b/cal_metrics.py
@@ -21,7 +21,10 @@ def perform_calculation(probs, labels, args, suffix=""):
cal_metrics = CalibrationMetrics(
class_to_calculate=args.class_to_calculate, num_bins=args.num_bins
)
-
+ if args.hl_test_validation:
+ df = args.num_bins
+ else:
+ df = args.num_bins - 2
metrics_to_calculate = args.metrics.split(",") if args.metrics else ["all"]
if metrics_to_calculate == ["all"]:
metrics_to_calculate = "all"
@@ -30,6 +33,7 @@ def perform_calculation(probs, labels, args, suffix=""):
y_proba=probs,
metrics=metrics_to_calculate,
perform_pervalance_adjustment=args.prevalence_adjustment,
+ df = df
)
keys = list(result.keys())
@@ -42,6 +46,7 @@ def perform_calculation(probs, labels, args, suffix=""):
n_samples=args.n_bootstrap,
metrics=metrics_to_calculate,
perform_pervalance_adjustment=args.prevalence_adjustment,
+ df = df
)
CI = get_CI(bootstrap_results)
result = np.vstack((result, np.array(list(CI.values())).T))
@@ -214,6 +219,12 @@ def main():
default=10,
help="Number of bins for ECE/MCE/HL calculations (default: 10)",
)
+ parser.add_argument(
+ "--hl_test_validation",
+ default=False,
+ action="store_true",
+ help="Using nbin instead of nbin-2 as HL test DOF. Use it if the dataset is validation set.",
+ )
parser.add_argument(
"--topclass",
default=False,
diff --git a/calzone/metrics.py b/calzone/metrics.py
index ad5211c..0a9b0fb 100755
--- a/calzone/metrics.py
+++ b/calzone/metrics.py
@@ -16,7 +16,7 @@
import numpy.lib.recfunctions as rf
import contextlib
-def hosmer_lemeshow_test(reliability, confidence, bin_count, df=None):
+def hosmer_lemeshow_test(reliability, confidence, bin_count, df=None, **kwargs):
"""
Compute the Hosmer-Lemeshow test for goodness of fit.
@@ -546,7 +546,7 @@ def calculate_metrics(
results["MCE-H"] = mce_h_class
elif metric == "HL-H":
hl_h_score, hl_h, _ = hosmer_lemeshow_test(
- acc_H_class, confidence_H_class, bin_count_H_class
+ acc_H_class, confidence_H_class, bin_count_H_class, **kwargs
)
results["HL-H score"] = hl_h_score
results["HL-H p-value"] = hl_h
@@ -591,7 +591,7 @@ def calculate_metrics(
results["MCE-C"] = mce_c_class
elif metric == "HL-C":
hl_c_score, hl_c, _ = hosmer_lemeshow_test(
- acc_C_class, confidence_C_class, bin_count_C_class
+ acc_C_class, confidence_C_class, bin_count_C_class, **kwargs
)
results["HL-C score"] = hl_c_score
results["HL-C p-value"] = hl_c
diff --git a/docs/build/doctrees/calzone.doctree b/docs/build/doctrees/calzone.doctree
index e4dbaf6..4a0488b 100644
Binary files a/docs/build/doctrees/calzone.doctree and b/docs/build/doctrees/calzone.doctree differ
diff --git a/docs/build/doctrees/environment.pickle b/docs/build/doctrees/environment.pickle
index 2967dde..124a11a 100644
Binary files a/docs/build/doctrees/environment.pickle and b/docs/build/doctrees/environment.pickle differ
diff --git a/docs/build/doctrees/nbsphinx/notebooks/hl_test.ipynb b/docs/build/doctrees/nbsphinx/notebooks/hl_test.ipynb
index ec53edd..41e8204 100644
--- a/docs/build/doctrees/nbsphinx/notebooks/hl_test.ipynb
+++ b/docs/build/doctrees/nbsphinx/notebooks/hl_test.ipynb
@@ -20,7 +20,7 @@
"\\text{HL} = \\sum_{m=1}^{M} \\left[\\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}} + \\frac{(O_{0,m}-E_{0,m})^2}{E_{0,m}}\\right] = \\sum_{m=1}^{M} \\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}(1-\\frac{E_{1,m}}{N_m})} \\sim \\chi^2_{M-2}\n",
"$$\n",
"\n",
- "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. (Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We could not find a proof to this statement and we provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$.)"
+ "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$."
]
},
{
@@ -280,7 +280,54 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We can see that both the equal-width and the equal-count method have the incorrect size."
+ "We can see that both the equal-width and the equal-count method have the incorrect size. The simulation support the claim that the degree of freedom should be M instead of M-2. We can show it with simulation. We are not proving the claim here since it is beyond the scope of this documentation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The size of HL-H with df=M is : 0.047\n",
+ "The size of HL-C with df=M is : 0.055\n"
+ ]
+ }
+ ],
+ "source": [
+ "### The size of HL Test\n",
+ "from calzone.utils import fake_binary_data_generator\n",
+ "from importlib import reload\n",
+ "import calzone.metrics\n",
+ "reload(calzone.metrics)\n",
+ "from calzone.metrics import CalibrationMetrics\n",
+ "np.random.seed(123)\n",
+ "fakedata_generator = fake_binary_data_generator(alpha_val=0.5, beta_val=0.5)\n",
+ "cal_metrics = CalibrationMetrics()\n",
+ "sample_size = 1000\n",
+ "simulation_size = 10000\n",
+ "results = []\n",
+ "# generate data\n",
+ "for i in range(simulation_size):\n",
+ " X, y = fakedata_generator.generate_data(sample_size)\n",
+ " if i == 0:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=False, df = 10)\n",
+ " keys = list(tempresult.keys())\n",
+ " results.append(np.array(list(tempresult.values())))\n",
+ " else:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=True, df = 10)\n",
+ " results.append(tempresult)\n",
+ "results = np.array(results)\n",
+ "\n",
+ "hl_h_pvalue = results[:,1]\n",
+ "hl_c_pvalue = results[:,3]\n",
+ "size_h = np.mean(hl_h_pvalue < 0.05)\n",
+ "size_c = np.mean(hl_c_pvalue < 0.05)\n",
+ "print(\"The size of HL-H with df=M is :\", round(size_h,3))\n",
+ "print(\"The size of HL-C with df=M is :\", round(size_c,3))"
]
},
{
diff --git a/docs/build/doctrees/nbsphinx/notebooks/quickstart.ipynb b/docs/build/doctrees/nbsphinx/notebooks/quickstart.ipynb
index 1e5b953..63d7bc1 100644
--- a/docs/build/doctrees/nbsphinx/notebooks/quickstart.ipynb
+++ b/docs/build/doctrees/nbsphinx/notebooks/quickstart.ipynb
@@ -184,7 +184,8 @@
" [--prevalence_adjustment] [--n_bootstrap N_BOOTSTRAP]\n",
" [--bootstrap_ci BOOTSTRAP_CI]\n",
" [--class_to_calculate CLASS_TO_CALCULATE]\n",
- " [--num_bins NUM_BINS] [--topclass]\n",
+ " [--num_bins NUM_BINS]\n",
+ " [--hl_test_validation HL_TEST_VALIDATION] [--topclass]\n",
" [--save_metrics SAVE_METRICS] [--plot]\n",
" [--plot_bins PLOT_BINS] [--save_plot SAVE_PLOT]\n",
" [--save_diagram_output SAVE_DIAGRAM_OUTPUT] [--verbose]\n",
@@ -211,6 +212,9 @@
" Class to calculate metrics for (default: 1)\n",
" --num_bins NUM_BINS Number of bins for ECE/MCE/HL calculations (default:\n",
" 10)\n",
+ " --hl_test_validation HL_TEST_VALIDATION\n",
+ " Using nbin instead of nbin-2 as HL test DOF. Use it if\n",
+ " the dataset is validation set.\n",
" --topclass Whether to transform the problem to top-class problem.\n",
" --save_metrics SAVE_METRICS\n",
" Save the metrics to a csv file\n",
@@ -218,7 +222,8 @@
" --plot_bins PLOT_BINS\n",
" Number of bins for reliability diagram\n",
" --save_plot SAVE_PLOT\n",
- " Save the plot to a file\n",
+ " Save the plot to a file. Must end with valid image\n",
+ " formats.\n",
" --save_diagram_output SAVE_DIAGRAM_OUTPUT\n",
" Save the reliability diagram output to a file\n",
" --verbose Print verbose output\n"
@@ -290,7 +295,8 @@
"--verbose \\\n",
"--save_diagram_output '../../../example_data/simulated_welldata_diagram_output.csv' \n",
"### save_diagram_output only when you want to save the reliability diagram output\n",
- "#--prevalence_adjustment # only when you want to apply prevalence adjustment"
+ "#--prevalence_adjustment # only when you want to apply prevalence adjustment\n",
+ "#--hl_test_validation #use it only when the data is from validation set"
]
},
{
diff --git a/docs/build/doctrees/notebooks/hl_test.doctree b/docs/build/doctrees/notebooks/hl_test.doctree
index b34a697..d071253 100644
Binary files a/docs/build/doctrees/notebooks/hl_test.doctree and b/docs/build/doctrees/notebooks/hl_test.doctree differ
diff --git a/docs/build/doctrees/notebooks/quickstart.doctree b/docs/build/doctrees/notebooks/quickstart.doctree
index 2c9f318..7b5c69f 100644
Binary files a/docs/build/doctrees/notebooks/quickstart.doctree and b/docs/build/doctrees/notebooks/quickstart.doctree differ
diff --git a/docs/build/html/_modules/calzone/metrics.html b/docs/build/html/_modules/calzone/metrics.html
index 4bc7441..bee4c2d 100644
--- a/docs/build/html/_modules/calzone/metrics.html
+++ b/docs/build/html/_modules/calzone/metrics.html
@@ -105,7 +105,7 @@
Source code for calzone.metrics
[docs]
-
def hosmer_lemeshow_test(reliability, confidence, bin_count, df=None):
+
def hosmer_lemeshow_test(reliability, confidence, bin_count, df=None, **kwargs):
"""
Compute the Hosmer-Lemeshow test for goodness of fit.
@@ -667,7 +667,7 @@
Source code for calzone.metrics
results["MCE-H"] = mce_h_class
elif metric == "HL-H":
hl_h_score, hl_h, _ = hosmer_lemeshow_test(
- acc_H_class, confidence_H_class, bin_count_H_class
+ acc_H_class, confidence_H_class, bin_count_H_class, **kwargs
)
results["HL-H score"] = hl_h_score
results["HL-H p-value"] = hl_h
@@ -712,7 +712,7 @@ Source code for calzone.metrics
results["MCE-C"] = mce_c_class
elif metric == "HL-C":
hl_c_score, hl_c, _ = hosmer_lemeshow_test(
- acc_C_class, confidence_C_class, bin_count_C_class
+ acc_C_class, confidence_C_class, bin_count_C_class, **kwargs
)
results["HL-C score"] = hl_c_score
results["HL-C p-value"] = hl_c
diff --git a/docs/build/html/_sources/notebooks/hl_test.ipynb.txt b/docs/build/html/_sources/notebooks/hl_test.ipynb.txt
index ec53edd..41e8204 100644
--- a/docs/build/html/_sources/notebooks/hl_test.ipynb.txt
+++ b/docs/build/html/_sources/notebooks/hl_test.ipynb.txt
@@ -20,7 +20,7 @@
"\\text{HL} = \\sum_{m=1}^{M} \\left[\\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}} + \\frac{(O_{0,m}-E_{0,m})^2}{E_{0,m}}\\right] = \\sum_{m=1}^{M} \\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}(1-\\frac{E_{1,m}}{N_m})} \\sim \\chi^2_{M-2}\n",
"$$\n",
"\n",
- "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. (Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We could not find a proof to this statement and we provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$.)"
+ "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$."
]
},
{
@@ -280,7 +280,54 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We can see that both the equal-width and the equal-count method have the incorrect size."
+ "We can see that both the equal-width and the equal-count method have the incorrect size. The simulation support the claim that the degree of freedom should be M instead of M-2. We can show it with simulation. We are not proving the claim here since it is beyond the scope of this documentation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The size of HL-H with df=M is : 0.047\n",
+ "The size of HL-C with df=M is : 0.055\n"
+ ]
+ }
+ ],
+ "source": [
+ "### The size of HL Test\n",
+ "from calzone.utils import fake_binary_data_generator\n",
+ "from importlib import reload\n",
+ "import calzone.metrics\n",
+ "reload(calzone.metrics)\n",
+ "from calzone.metrics import CalibrationMetrics\n",
+ "np.random.seed(123)\n",
+ "fakedata_generator = fake_binary_data_generator(alpha_val=0.5, beta_val=0.5)\n",
+ "cal_metrics = CalibrationMetrics()\n",
+ "sample_size = 1000\n",
+ "simulation_size = 10000\n",
+ "results = []\n",
+ "# generate data\n",
+ "for i in range(simulation_size):\n",
+ " X, y = fakedata_generator.generate_data(sample_size)\n",
+ " if i == 0:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=False, df = 10)\n",
+ " keys = list(tempresult.keys())\n",
+ " results.append(np.array(list(tempresult.values())))\n",
+ " else:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=True, df = 10)\n",
+ " results.append(tempresult)\n",
+ "results = np.array(results)\n",
+ "\n",
+ "hl_h_pvalue = results[:,1]\n",
+ "hl_c_pvalue = results[:,3]\n",
+ "size_h = np.mean(hl_h_pvalue < 0.05)\n",
+ "size_c = np.mean(hl_c_pvalue < 0.05)\n",
+ "print(\"The size of HL-H with df=M is :\", round(size_h,3))\n",
+ "print(\"The size of HL-C with df=M is :\", round(size_c,3))"
]
},
{
diff --git a/docs/build/html/_sources/notebooks/quickstart.ipynb.txt b/docs/build/html/_sources/notebooks/quickstart.ipynb.txt
index 1e5b953..63d7bc1 100644
--- a/docs/build/html/_sources/notebooks/quickstart.ipynb.txt
+++ b/docs/build/html/_sources/notebooks/quickstart.ipynb.txt
@@ -184,7 +184,8 @@
" [--prevalence_adjustment] [--n_bootstrap N_BOOTSTRAP]\n",
" [--bootstrap_ci BOOTSTRAP_CI]\n",
" [--class_to_calculate CLASS_TO_CALCULATE]\n",
- " [--num_bins NUM_BINS] [--topclass]\n",
+ " [--num_bins NUM_BINS]\n",
+ " [--hl_test_validation HL_TEST_VALIDATION] [--topclass]\n",
" [--save_metrics SAVE_METRICS] [--plot]\n",
" [--plot_bins PLOT_BINS] [--save_plot SAVE_PLOT]\n",
" [--save_diagram_output SAVE_DIAGRAM_OUTPUT] [--verbose]\n",
@@ -211,6 +212,9 @@
" Class to calculate metrics for (default: 1)\n",
" --num_bins NUM_BINS Number of bins for ECE/MCE/HL calculations (default:\n",
" 10)\n",
+ " --hl_test_validation HL_TEST_VALIDATION\n",
+ " Using nbin instead of nbin-2 as HL test DOF. Use it if\n",
+ " the dataset is validation set.\n",
" --topclass Whether to transform the problem to top-class problem.\n",
" --save_metrics SAVE_METRICS\n",
" Save the metrics to a csv file\n",
@@ -218,7 +222,8 @@
" --plot_bins PLOT_BINS\n",
" Number of bins for reliability diagram\n",
" --save_plot SAVE_PLOT\n",
- " Save the plot to a file\n",
+ " Save the plot to a file. Must end with valid image\n",
+ " formats.\n",
" --save_diagram_output SAVE_DIAGRAM_OUTPUT\n",
" Save the reliability diagram output to a file\n",
" --verbose Print verbose output\n"
@@ -290,7 +295,8 @@
"--verbose \\\n",
"--save_diagram_output '../../../example_data/simulated_welldata_diagram_output.csv' \n",
"### save_diagram_output only when you want to save the reliability diagram output\n",
- "#--prevalence_adjustment # only when you want to apply prevalence adjustment"
+ "#--prevalence_adjustment # only when you want to apply prevalence adjustment\n",
+ "#--hl_test_validation #use it only when the data is from validation set"
]
},
{
diff --git a/docs/build/html/calzone.html b/docs/build/html/calzone.html
index 39c487b..707b549 100644
--- a/docs/build/html/calzone.html
+++ b/docs/build/html/calzone.html
@@ -386,7 +386,7 @@ Submodules[source]
Compute the Hosmer-Lemeshow test for goodness of fit.
This test is used to assess the calibration of binary classification models with full probability outputs.
It compares observed and expected frequencies of events in groups of the data.
diff --git a/docs/build/html/notebooks/hl_test.html b/docs/build/html/notebooks/hl_test.html
index 6f302f1..54ade3e 100644
--- a/docs/build/html/notebooks/hl_test.html
+++ b/docs/build/html/notebooks/hl_test.html
@@ -108,7 +108,7 @@ Theoretical Background
where \(E_{1,m}\) is the expected number of class 1 events in the \(\text{m}^{th}\) bin, \(O_{1,m}\) is the observed number of class 1 events in the \(\text{m}^{th}\) bin, \(N_m\) is the total number of observations in the \(\text{m}^{th}\) bin, and \(M\) is the number of bins. The HL test statistic is distributed as a chi-squared distribution with \(M-2\) degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine
-whether we can reject the null hypothesis that the model is well-calibrated. (Notice that the degree of freedom of HL test is \(M-2\) by default but some literature suggests that the degree of freedom should be \(M\) instead when the samples is not used for training. We could not find a proof to this statement and we provides the option to specify the degree of freedom in the calzone
. The default value is still \(M-2\).)
+whether we can reject the null hypothesis that the model is well-calibrated. Notice that the degree of freedom of HL test is \(M-2\) by default but some literature suggests that the degree of freedom should be \(M\) instead when the samples is not used for training. We provides the option to specify the degree of freedom in the calzone
. The default value is still \(M-2\).
Pros of HL test
@@ -310,7 +310,53 @@ Size of HL test
-We can see that both the equal-width and the equal-count method have the incorrect size.
+We can see that both the equal-width and the equal-count method have the incorrect size. The simulation support the claim that the degree of freedom should be M instead of M-2. We can show it with simulation. We are not proving the claim here since it is beyond the scope of this documentation.
+
+
+
+
+
+
+The size of HL-H with df=M is : 0.047
+The size of HL-C with df=M is : 0.055
+
+
Reference
diff --git a/docs/build/html/notebooks/hl_test.ipynb b/docs/build/html/notebooks/hl_test.ipynb
index ec53edd..41e8204 100644
--- a/docs/build/html/notebooks/hl_test.ipynb
+++ b/docs/build/html/notebooks/hl_test.ipynb
@@ -20,7 +20,7 @@
"\\text{HL} = \\sum_{m=1}^{M} \\left[\\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}} + \\frac{(O_{0,m}-E_{0,m})^2}{E_{0,m}}\\right] = \\sum_{m=1}^{M} \\frac{(O_{1,m}-E_{1,m})^2}{E_{1,m}(1-\\frac{E_{1,m}}{N_m})} \\sim \\chi^2_{M-2}\n",
"$$\n",
"\n",
- "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. (Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We could not find a proof to this statement and we provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$.)"
+ "where $E_{1,m}$ is the expected number of class 1 events in the $\\text{m}^{th}$ bin, $O_{1,m}$ is the observed number of class 1 events in the $\\text{m}^{th}$ bin, $N_m$ is the total number of observations in the $\\text{m}^{th}$ bin, and $M$ is the number of bins. The HL test statistic is distributed as a chi-squared distribution with $M-2$ degrees of freedom. We can then use this test statistic to calculate the p-value for the test and determine whether we can reject the null hypothesis that the model is well-calibrated. Notice that the degree of freedom of HL test is $M-2$ by default but some literature suggests that the degree of freedom should be $M$ instead when the samples is not used for training. We provides the option to specify the degree of freedom in the `calzone`. The default value is still $M-2$."
]
},
{
@@ -280,7 +280,54 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "We can see that both the equal-width and the equal-count method have the incorrect size."
+ "We can see that both the equal-width and the equal-count method have the incorrect size. The simulation support the claim that the degree of freedom should be M instead of M-2. We can show it with simulation. We are not proving the claim here since it is beyond the scope of this documentation."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {},
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The size of HL-H with df=M is : 0.047\n",
+ "The size of HL-C with df=M is : 0.055\n"
+ ]
+ }
+ ],
+ "source": [
+ "### The size of HL Test\n",
+ "from calzone.utils import fake_binary_data_generator\n",
+ "from importlib import reload\n",
+ "import calzone.metrics\n",
+ "reload(calzone.metrics)\n",
+ "from calzone.metrics import CalibrationMetrics\n",
+ "np.random.seed(123)\n",
+ "fakedata_generator = fake_binary_data_generator(alpha_val=0.5, beta_val=0.5)\n",
+ "cal_metrics = CalibrationMetrics()\n",
+ "sample_size = 1000\n",
+ "simulation_size = 10000\n",
+ "results = []\n",
+ "# generate data\n",
+ "for i in range(simulation_size):\n",
+ " X, y = fakedata_generator.generate_data(sample_size)\n",
+ " if i == 0:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=False, df = 10)\n",
+ " keys = list(tempresult.keys())\n",
+ " results.append(np.array(list(tempresult.values())))\n",
+ " else:\n",
+ " tempresult = cal_metrics.calculate_metrics(y, X, ['HL-H', 'HL-C'],return_numpy=True, df = 10)\n",
+ " results.append(tempresult)\n",
+ "results = np.array(results)\n",
+ "\n",
+ "hl_h_pvalue = results[:,1]\n",
+ "hl_c_pvalue = results[:,3]\n",
+ "size_h = np.mean(hl_h_pvalue < 0.05)\n",
+ "size_c = np.mean(hl_c_pvalue < 0.05)\n",
+ "print(\"The size of HL-H with df=M is :\", round(size_h,3))\n",
+ "print(\"The size of HL-C with df=M is :\", round(size_c,3))"
]
},
{
diff --git a/docs/build/html/notebooks/quickstart.html b/docs/build/html/notebooks/quickstart.html
index f3adffa..d4c0377 100644
--- a/docs/build/html/notebooks/quickstart.html
+++ b/docs/build/html/notebooks/quickstart.html
@@ -191,7 +191,8 @@ Command line interface
diff --git a/docs/build/html/notebooks/quickstart.ipynb b/docs/build/html/notebooks/quickstart.ipynb
index 1e5b953..63d7bc1 100644
--- a/docs/build/html/notebooks/quickstart.ipynb
+++ b/docs/build/html/notebooks/quickstart.ipynb
@@ -184,7 +184,8 @@
" [--prevalence_adjustment] [--n_bootstrap N_BOOTSTRAP]\n",
" [--bootstrap_ci BOOTSTRAP_CI]\n",
" [--class_to_calculate CLASS_TO_CALCULATE]\n",
- " [--num_bins NUM_BINS] [--topclass]\n",
+ " [--num_bins NUM_BINS]\n",
+ " [--hl_test_validation HL_TEST_VALIDATION] [--topclass]\n",
" [--save_metrics SAVE_METRICS] [--plot]\n",
" [--plot_bins PLOT_BINS] [--save_plot SAVE_PLOT]\n",
" [--save_diagram_output SAVE_DIAGRAM_OUTPUT] [--verbose]\n",
@@ -211,6 +212,9 @@
" Class to calculate metrics for (default: 1)\n",
" --num_bins NUM_BINS Number of bins for ECE/MCE/HL calculations (default:\n",
" 10)\n",
+ " --hl_test_validation HL_TEST_VALIDATION\n",
+ " Using nbin instead of nbin-2 as HL test DOF. Use it if\n",
+ " the dataset is validation set.\n",
" --topclass Whether to transform the problem to top-class problem.\n",
" --save_metrics SAVE_METRICS\n",
" Save the metrics to a csv file\n",
@@ -218,7 +222,8 @@
" --plot_bins PLOT_BINS\n",
" Number of bins for reliability diagram\n",
" --save_plot SAVE_PLOT\n",
- " Save the plot to a file\n",
+ " Save the plot to a file. Must end with valid image\n",
+ " formats.\n",
" --save_diagram_output SAVE_DIAGRAM_OUTPUT\n",
" Save the reliability diagram output to a file\n",
" --verbose Print verbose output\n"
@@ -290,7 +295,8 @@
"--verbose \\\n",
"--save_diagram_output '../../../example_data/simulated_welldata_diagram_output.csv' \n",
"### save_diagram_output only when you want to save the reliability diagram output\n",
- "#--prevalence_adjustment # only when you want to apply prevalence adjustment"
+ "#--prevalence_adjustment # only when you want to apply prevalence adjustment\n",
+ "#--hl_test_validation #use it only when the data is from validation set"
]
},
{
diff --git a/docs/build/html/searchindex.js b/docs/build/html/searchindex.js
index e13f7aa..11640b2 100644
--- a/docs/build/html/searchindex.js
+++ b/docs/build/html/searchindex.js
@@ -1 +1 @@
-Search.setIndex({"alltitles": {"COX calibration analysis": [[4, null]], "Calculating Cox slope and intercept with calzone": [[4, "Calculating-Cox-slope-and-intercept-with-calzone"]], "Calculating ECE and MCE with calzone": [[5, "Calculating-ECE-and-MCE-with-calzone"]], "Calculating HL test statistics and p-value with calzone": [[6, "Calculating-HL-test-statistics-and-p-value-with-calzone"]], "Calculating LOESS ICI and COX ICI using calzone": [[7, "Calculating-LOESS-ICI-and-COX-ICI-using-calzone"]], "Calculating the Spieegelhalter Z score and p-value using calzone": [[12, "Calculating-the-Spieegelhalter-Z-score-and-p-value-using-calzone"]], "Command line interface": [[10, "Command-line-interface"]], "Cons of Cox calibration analysis": [[4, "Cons-of-Cox-calibration-analysis"]], "Cons of ECE and MCE": [[5, "Cons-of-ECE-and-MCE"]], "Cons of HL Test": [[6, "Cons-of-HL-Test"]], "Cons of ICI": [[7, "Cons-of-ICI"]], "Cons of Spiegelhalter\u2019s Z test": [[12, "Cons-of-Spiegelhalter's-Z-test"]], "Contents:": [[1, null]], "ECE and MCE as function of bin size": [[5, "ECE-and-MCE-as-function-of-bin-size"]], "Estimated ECE and MCE": [[5, "Estimated-ECE-and-MCE"]], "Exepected Calibration Error(ECE) and Maximum Calibration Error (MCE)": [[5, null]], "Guide to calzone and calibration metrics": [[8, "Guide-to-calzone-and-calibration-metrics"]], "Hosmer-Lemeshow test (HL test)": [[6, null]], "Installation": [[10, "Installation"]], "Integrated Calibration Index (ICI)": [[7, null]], "Module contents": [[0, "module-calzone"]], "Multiclass extension": [[14, null]], "Preform prevalence adjustment in calzone": [[9, "Preform-prevalence-adjustment-in-calzone"]], "Prevalence adjustment": [[9, null]], "Prevalence adjustment and constant shift in logit of class-of-interest": [[9, "Prevalence-adjustment-and-constant-shift-in-logit-of-class-of-interest"]], "Pros of Cox calibration analysis": [[4, "Pros-of-Cox-calibration-analysis"]], "Pros of ECE and MCE": [[5, "Pros-of-ECE-and-MCE"]], "Pros of HL test": [[6, "Pros-of-HL-test"]], "Pros of ICI": [[7, "Pros-of-ICI"]], "Pros of Spiegelhalter\u2019s Z test": [[12, "Pros-of-Spiegelhalter's-Z-test"]], "Quick Start": [[10, null]], "Reference": [[5, "Reference"], [6, "Reference"], [7, "Reference"], [12, "Reference"]], "References": [[4, "References"], [9, "References"], [11, "References"]], "Reliability diagram": [[11, null]], "Running GUI": [[3, null]], "Size of COX slope and intecept test": [[4, "Size-of-COX-slope-and-intecept-test"]], "Size of HL test": [[6, "Size-of-HL-test"]], "Spiegelhalter\u2019s Z-test": [[12, null]], "Subgroup analysis": [[13, null]], "Submodules": [[0, "submodules"]], "Summary and guide for calzone": [[8, null]], "Testing the size of Spiegelhalter\u2019s z test": [[12, "Testing-the-size-of-Spiegelhalter's-z-test"]], "Theoretical Background": [[4, "Theoretical-Background"], [5, "Theoretical-Background"], [6, "Theoretical-Background"], [7, "Theoretical-Background"]], "Theoretical background": [[12, "Theoretical-background"]], "Using calzone in python": [[10, "Using-calzone-in-python"]], "Visualization of the fitted curve": [[7, "Visualization-of-the-fitted-curve"]], "Welcome to the documentation for calzone": [[1, null]], "calzone": [[2, null]], "calzone package": [[0, null]], "calzone.metrics module": [[0, "module-calzone.metrics"]], "calzone.utils module": [[0, "module-calzone.utils"]], "calzone.vis module": [[0, "module-calzone.vis"]]}, "docnames": ["calzone", "index", "modules", "notebooks/GUI", "notebooks/cox", "notebooks/ece_mce", "notebooks/hl_test", "notebooks/ici", "notebooks/metrics_summary", "notebooks/prevalence_adjustment", "notebooks/quickstart", "notebooks/reliability_diagram", "notebooks/spiegelhalter_z", "notebooks/subgroup", "notebooks/topclass"], "envversion": {"nbsphinx": 4, "sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["calzone.rst", "index.rst", "modules.rst", "notebooks/GUI.ipynb", "notebooks/cox.ipynb", "notebooks/ece_mce.ipynb", "notebooks/hl_test.ipynb", "notebooks/ici.ipynb", "notebooks/metrics_summary.ipynb", "notebooks/prevalence_adjustment.ipynb", "notebooks/quickstart.ipynb", "notebooks/reliability_diagram.ipynb", "notebooks/spiegelhalter_z.ipynb", "notebooks/subgroup.ipynb", "notebooks/topclass.ipynb"], "indexentries": {"__init__() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.__init__", false]], "__init__() (calzone.utils.data_loader method)": [[0, "calzone.utils.data_loader.__init__", false], [0, "id0", false]], "__init__() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.__init__", false]], "abraitary_miscal() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.abraitary_miscal", false]], "alpha_val (calzone.utils.fake_binary_data_generator attribute)": [[0, "calzone.utils.fake_binary_data_generator.alpha_val", false]], "apply_prevalence_adjustment() (in module calzone.utils)": [[0, "calzone.utils.apply_prevalence_adjustment", false]], "beta_val (calzone.utils.fake_binary_data_generator attribute)": [[0, "calzone.utils.fake_binary_data_generator.beta_val", false]], "bootstrap() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.bootstrap", false]], "cal_ici() (in module calzone.metrics)": [[0, "calzone.metrics.cal_ICI", false]], "cal_ici_cox() (in module calzone.metrics)": [[0, "calzone.metrics.cal_ICI_cox", false]], "calculate_ece_mce() (in module calzone.metrics)": [[0, "calzone.metrics.calculate_ece_mce", false]], "calculate_metrics() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.calculate_metrics", false]], "calibrationmetrics (class in calzone.metrics)": [[0, "calzone.metrics.CalibrationMetrics", false]], "calzone": [[0, "module-calzone", false]], "calzone.metrics": [[0, "module-calzone.metrics", false]], "calzone.utils": [[0, "module-calzone.utils", false]], "calzone.vis": [[0, "module-calzone.vis", false]], "cox_regression_analysis() (in module calzone.metrics)": [[0, "calzone.metrics.cox_regression_analysis", false]], "data (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.data", false]], "data_loader (class in calzone.utils)": [[0, "calzone.utils.data_loader", false]], "data_path (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.data_path", false]], "fake_binary_data_generator (class in calzone.utils)": [[0, "calzone.utils.fake_binary_data_generator", false]], "find_optimal_prevalence() (in module calzone.utils)": [[0, "calzone.utils.find_optimal_prevalence", false]], "generate_data() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.generate_data", false]], "get_ci() (in module calzone.metrics)": [[0, "calzone.metrics.get_CI", false]], "have_subgroup (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.have_subgroup", false]], "header (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.Header", false]], "hosmer_lemeshow_test() (in module calzone.metrics)": [[0, "calzone.metrics.hosmer_lemeshow_test", false]], "labels (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.labels", false]], "linear_miscal() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.linear_miscal", false]], "logit_func() (in module calzone.metrics)": [[0, "calzone.metrics.logit_func", false]], "loss() (in module calzone.utils)": [[0, "calzone.utils.loss", false]], "lowess_regression_analysis() (in module calzone.metrics)": [[0, "calzone.metrics.lowess_regression_analysis", false]], "make_roc_curve() (in module calzone.utils)": [[0, "calzone.utils.make_roc_curve", false]], "module": [[0, "module-calzone", false], [0, "module-calzone.metrics", false], [0, "module-calzone.utils", false], [0, "module-calzone.vis", false]], "optimal_prevalence_adjustment() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.optimal_prevalence_adjustment", false]], "plot_reliability_diagram() (in module calzone.vis)": [[0, "calzone.vis.plot_reliability_diagram", false]], "plot_roc_curve() (in module calzone.vis)": [[0, "calzone.vis.plot_roc_curve", false]], "probs (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.probs", false]], "reliability_diagram() (in module calzone.utils)": [[0, "calzone.utils.reliability_diagram", false]], "removing_nan() (in module calzone.utils)": [[0, "calzone.utils.removing_nan", false]], "softmax_to_logits() (in module calzone.utils)": [[0, "calzone.utils.softmax_to_logits", false]], "spiegelhalter_z_test() (in module calzone.metrics)": [[0, "calzone.metrics.spiegelhalter_z_test", false]], "subgroup_indices (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroup_indices", false]], "subgroups (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups", false]], "subgroups_class (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups_class", false]], "subgroups_index (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups_index", false]], "transform_topclass() (calzone.utils.data_loader method)": [[0, "calzone.utils.data_loader.transform_topclass", false], [0, "id1", false]]}, "objects": {"": [[0, 0, 0, "-", "calzone"]], "calzone": [[0, 0, 0, "-", "metrics"], [0, 0, 0, "-", "utils"], [0, 0, 0, "-", "vis"]], "calzone.metrics": [[0, 1, 1, "", "CalibrationMetrics"], [0, 3, 1, "", "cal_ICI"], [0, 3, 1, "", "cal_ICI_cox"], [0, 3, 1, "", "calculate_ece_mce"], [0, 3, 1, "", "cox_regression_analysis"], [0, 3, 1, "", "get_CI"], [0, 3, 1, "", "hosmer_lemeshow_test"], [0, 3, 1, "", "logit_func"], [0, 3, 1, "", "lowess_regression_analysis"], [0, 3, 1, "", "spiegelhalter_z_test"]], "calzone.metrics.CalibrationMetrics": [[0, 2, 1, "", "__init__"], [0, 2, 1, "", "bootstrap"], [0, 2, 1, "", "calculate_metrics"], [0, 2, 1, "", "optimal_prevalence_adjustment"]], "calzone.utils": [[0, 3, 1, "", "apply_prevalence_adjustment"], [0, 1, 1, "", "data_loader"], [0, 1, 1, "", "fake_binary_data_generator"], [0, 3, 1, "", "find_optimal_prevalence"], [0, 3, 1, "", "loss"], [0, 3, 1, "", "make_roc_curve"], [0, 3, 1, "", "reliability_diagram"], [0, 3, 1, "", "removing_nan"], [0, 3, 1, "", "softmax_to_logits"]], "calzone.utils.data_loader": [[0, 4, 1, "", "Header"], [0, 2, 1, "id0", "__init__"], [0, 4, 1, "", "data"], [0, 4, 1, "", "data_path"], [0, 4, 1, "", "have_subgroup"], [0, 4, 1, "", "labels"], [0, 4, 1, "", "probs"], [0, 4, 1, "", "subgroup_indices"], [0, 4, 1, "", "subgroups"], [0, 4, 1, "", "subgroups_class"], [0, 4, 1, "", "subgroups_index"], [0, 2, 1, "id1", "transform_topclass"]], "calzone.utils.fake_binary_data_generator": [[0, 2, 1, "", "__init__"], [0, 2, 1, "", "abraitary_miscal"], [0, 4, 1, "", "alpha_val"], [0, 4, 1, "", "beta_val"], [0, 2, 1, "", "generate_data"], [0, 2, 1, "", "linear_miscal"]], "calzone.vis": [[0, 3, 1, "", "plot_reliability_diagram"], [0, 3, 1, "", "plot_roc_curve"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "terms": {"": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "000": [4, 10, 13], "00037947714112375366": 13, "001": [0, 7, 10], "0012819521292332472": 14, "002": 10, "003": 10, "0038637011857438034": 14, "004": 10, "0046758796391944": 9, "005": 10, "00558856942568957": [7, 10, 13], "005610391483826338": [4, 7, 10, 13], "006": [10, 13], "007": 10, "007508966220374058": 9, "008": 10, "008733966945443138": [5, 10, 13], "008745511902314453": 9, "009": [10, 13], "009313116424641145": 14, "009458033653818828": [5, 10, 13, 14], "009458033653818974": 14, "009608653731328977": [5, 10, 13, 14], "009608653731329372": 14, "01": [10, 13], "010355911839501922": 9, "011": 10, "012": [10, 13], "01208775955804901": [5, 10, 13], "013671230516636386": 9, "014081013182402267": 9, "016": 10, "017": 10, "018": 10, "019": 10, "02": [4, 10, 13], "020": 10, "020515047600205394": 14, "020515047600205505": [5, 10, 13, 14], "021": [10, 13], "022": [9, 10], "023": [10, 13], "02324031223486256": [5, 10, 13], "025": [4, 10], "028": 10, "029": 4, "029403495083063648": 9, "029652031234071": 14, "03": 10, "031": 10, "032": 10, "03353272525376893": [4, 7, 10, 13], "034": [4, 10, 13], "035": 10, "036": 10, "037": [10, 13], "038": [10, 13], "039": [10, 13], "039000000000000035": 4, "03926468843081932": 14, "03926468843081976": [5, 10, 13, 14], "04": 9, "040": 4, "041": 10, "042": [10, 13], "043": 10, "044": 10, "04497652296600376": [4, 7, 10, 13], "045": [10, 13], "0450": 4, "04599": 5, "046": 10, "048": [10, 13], "04848338618970194": [5, 10, 13], "049": [10, 12, 13], "05": [0, 6, 12], "050": 10, "051": [4, 10, 13], "0512096313774626": [4, 7, 10, 13], "052": 10, "054": 10, "055": [10, 13], "056": 10, "05600000000000005": 4, "058": 10, "062": 10, "063": [10, 13], "064": [10, 13], "065": [10, 13], "066": 10, "068": 10, "06894458205508802": 9, "069": 10, "06991428582761099": 13, "07": [0, 10, 13], "071": 10, "072": 10, "073": 10, "07356445428053172": 7, "074": [10, 13], "07429481165606829": 13, "07479369479609524": 13, "075": [10, 13], "076": 10, "0765892898243467": 13, "07658928982434714": 13, "07692218401743334": 7, "077": [10, 13], "07746407648179383": 13, "07796623141885761": 13, "078": [10, 13], "07872518570110512": 13, "079": [10, 13], "07961758926734244": 9, "08": 10, "081": 10, "083": 10, "0830845954424": 14, "084": 10, "0841517729106883": 9, "0841517733462589": 9, "085": 10, "086": 10, "087": 10, "0884212323912401": 14, "09": 10, "091": 10, "092": 10, "0962280216661371": 9, "0984122810555748": 7, "0x7fe048e8b470": 5, "1": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "10": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "1000": [0, 4, 6, 10, 12], "10000": [5, 6, 12], "1002": [4, 7, 12], "101": 9, "1016": 9, "1027": 10, "1043": 6, "1069": 6, "107": 10, "108": 10, "109": 10, "1093": [4, 7, 9], "11": 9, "11017646753618837": 14, "111": 10, "1135847825485915": 14, "1138": [10, 13], "114": 10, "115": 10, "1156": 10, "116": [6, 10], "117": 6, "1175": 11, "1177": 9, "11820": 9, "12": 9, "123": [4, 6, 9, 10, 12, 13], "12348577118577644": [4, 7, 10, 13], "124": 10, "125": 10, "126": 10, "127": 10, "12775157222121533": 9, "1292": 10, "13": [10, 11], "1322110153978738": 14, "1327565894838103": 13, "133": [10, 13], "135": [10, 12], "1355": 10, "139": 10, "1393": 10, "1394": 9, "14": 11, "140": [10, 13], "14045600565696226": 13, "1409": 9, "14090872416947742": 13, "141": [10, 13], "1446": 9, "145": 10, "1457": 9, "15": [4, 7, 9, 10, 11, 14], "150": 0, "151": 10, "1512": 12, "1519": 12, "152": 10, "155": 10, "158": 10, "16": 6, "1609": 5, "16250572519432438": 13, "163": [10, 13], "168": 10, "1706": 5, "171": [10, 13], "1714434139853": 13, "175": 10, "18": [10, 13], "182": 10, "1844": 10, "185": 10, "1857": 10, "1927": 4, "1928": 4, "1958": 4, "1979": 7, "1980": 6, "1986": 12, "1997": 6, "1e": [0, 7], "1st": 4, "2": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "20": [6, 12], "2007": 11, "2008": [9, 12], "2009": 12, "2010": 9, "2011": 9, "2015": 5, "2017": 5, "2018": [4, 9], "2019": [5, 7], "202": 10, "2020": [4, 5, 7, 9], "2022": 5, "2024": 4, "203": 10, "204": 10, "205": 10, "21": [7, 10], "210": 4, "212": 4, "214": 10, "22": 11, "2246": [10, 13], "232": 10, "24": 10, "244": 10, "249": 10, "26": 10, "262": 4, "27": [4, 7, 9, 10, 13], "273": 10, "28": 10, "29": [5, 10], "2_": 6, "2p_i": 12, "3": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "300": 5, "31": 10, "319": 10, "327": [10, 13], "33": 10, "3300531914893617": 9, "3341": 10, "335": 10, "34": [4, 10, 12], "3465": 4, "352": [10, 13], "35209071874348785": [6, 10, 13], "368": 7, "37": 10, "376": [10, 13], "37632691618773545": 14, "3763269161877356": [10, 12, 13], "38": 7, "385628": 4, "39": [4, 5, 6, 7, 10, 12, 14], "3900": 10, "391": 10, "392": 10, "396": 10, "4": [0, 4, 5, 6, 7, 9, 10, 12, 14], "40": 11, "4051": 7, "4065": 7, "42": 11, "429": [10, 13], "43": 11, "4385762101924": 13, "439": [10, 13], "443": 10, "4436": 4, "4438": 4, "454": 10, "456": 12, "463": 10, "469": 10, "470": 10, "478": [10, 13], "47838663128188996": 13, "481": 10, "494": 10, "495": 10, "497": 10, "49863799264980607": 9, "4998": 4, "4999": 4, "5": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14], "50": 11, "5000": [4, 9, 10], "507": [10, 13], "5071793536874274": 13, "508": 10, "524": 10, "526": 10, "53": 4, "5359720760929648": 13, "536": [10, 13], "539": 10, "554": 10, "569": 10, "577": 10, "581": 10, "584": 10, "5958290924064796": 9, "6": [0, 4, 5, 6, 10, 14], "611": 10, "621": [4, 7], "626": 10, "631": 10, "633": [4, 7], "637": 10, "638": 10, "641": [10, 13], "643": 12, "651": 11, "661": 11, "664": 10, "666": 10, "668": [10, 13], "67": 10, "681": 10, "686": 10, "6897839569176842": 9, "694947603203135": [6, 10, 13], "695": [10, 13], "696": [10, 13], "698": 10, "7": [0, 4, 6, 10], "7066738713391099": [10, 12, 13], "7066738713391101": 14, "707": [10, 13], "716": 10, "727": 10, "729": 10, "732": [10, 13], "74": 7, "7486601568004448": 14, "778": 10, "779": 10, "781": 10, "7837388214288888": 9, "794": 10, "8": [0, 5, 6, 10, 13], "813": 10, "818": 10, "8281": 7, "829": 7, "836": 7, "842": [10, 13], "87": 9, "8754203499121678": 9, "8754203499121679": 9, "8835446575708198": [6, 10, 13], "884": [10, 13], "884991559088098": [6, 10, 13], "885": [10, 13], "886": 10, "888": 10, "9": [0, 6, 10], "9097229915817346": 14, "910": [10, 13], "93575342117766": 13, "936": [10, 13], "937": [4, 10, 13], "9372902801721911": [4, 7, 10, 13], "940": 10, "9400481147756811": 9, "942": 10, "95": [10, 11], "96": 0, "9602": 5, "971": 10, "975": 4, "977": 10, "9781118445112": 4, "981": 10, "990": 10, "9939": 4, "994": [10, 13], "9942": 4, "9942499557748269": [4, 7, 10, 13], "996": 10, "9990721119864874": 14, "A": [0, 4, 6, 7, 9, 11, 13], "And": 9, "But": 11, "By": 9, "FOR": 6, "For": [0, 4, 8, 9, 10, 12], "If": [0, 4, 8, 10], "In": [4, 5, 6, 7, 9, 10, 12, 13, 14], "It": [0, 1, 5, 6, 7, 10, 11, 12], "No": [4, 5, 9], "OF": 6, "On": 5, "One": 6, "Or": 10, "THE": 6, "That": 4, "The": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "Then": [3, 10], "There": [4, 5, 6, 10], "These": 0, "To": [1, 3, 4, 7, 8, 9, 10, 14], "_": [5, 6, 12, 14], "__init__": [0, 2], "aaai": 5, "ab": [5, 9], "about": [5, 6, 11, 14], "abov": [5, 9, 10], "abraitary_misc": [0, 2], "absenc": 0, "absolut": 0, "ac": 5, "academ": 9, "acc": 5, "access": 8, "accordingli": 0, "account": 5, "accur": [1, 8, 12], "accuraci": [0, 5, 7, 11], "achiev": 8, "acra": 9, "across": 0, "actual": [0, 7], "adapt": [5, 9], "add": [0, 9], "addint": 9, "addit": 0, "adjust": [0, 1, 4, 8, 10, 11], "adjusted_p": 9, "adjusted_preval": 0, "adjusted_prob": 0, "adjusted_proba": 0, "adopt": 5, "advantag": [4, 6, 7], "affect": [5, 6, 7, 9], "after": [8, 9, 12], "after_preval": 9, "again": [6, 8], "against": [0, 11], "aim": [5, 8], "aka": [4, 9], "al": [5, 6], "alern": 13, "all": [0, 3, 4, 5, 8, 10, 13, 14], "allow": 0, "alpha": [0, 6, 12], "alpha_v": [0, 2, 4, 6, 9, 10, 12], "alreadi": 10, "also": [4, 5, 6, 7, 9, 10, 12, 13], "altern": [4, 5, 7, 10], "alternativli": 14, "although": 4, "alwai": 5, "american": [4, 7], "an": [0, 4, 5, 6, 7, 9, 10, 13], "analysi": [0, 1], "ani": [0, 6, 7, 12], "append": [4, 6, 12], "appli": [0, 8, 9, 10], "applic": [0, 4, 9, 13], "apply_prevalence_adjust": [0, 2, 9], "approach": 14, "approxim": 12, "ar": [0, 3, 4, 5, 6, 10, 13], "arang": 5, "arbitrari": [0, 7], "area": 0, "argument": [0, 9, 10], "around": 4, "arrai": [0, 4, 6, 12], "arrieta": 5, "artifici": [5, 11], "arxiv": [5, 9], "assess": [0, 1, 4, 6, 8], "associ": [0, 4, 7], "assum": [0, 9, 10, 11], "assumpt": 6, "auc": 0, "austin": 7, "automat": 10, "avail": 0, "averag": [0, 5, 7, 8, 11], "avoid": 0, "b": [4, 9, 12, 13], "b_m": 5, "back": 0, "background": 1, "bad": 11, "bar": [0, 11], "base": [0, 5, 6], "basic": 10, "batch": 1, "bay": 9, "bayesian": 5, "becaus": 5, "becom": [9, 14], "been": [4, 6], "befor": [1, 9], "before_preval": 9, "being": 9, "below": [4, 5, 11], "bernoulli": 11, "beta": [0, 10], "beta_v": [0, 2, 4, 6, 9, 10, 12], "better": 0, "between": [0, 4, 5, 9], "beyond": 4, "big": 4, "biggest": [5, 6], "bin": [0, 1, 4, 6, 7, 8, 10, 11, 12], "bin_count": [0, 5, 6, 7, 11, 14], "bin_counts_0": 11, "bin_counts_1": 11, "bin_edg": [0, 5, 6, 7, 11, 14], "binari": [0, 1, 4, 8, 9, 10, 11, 14], "binomi": 10, "biostatist": 9, "blue": 11, "bool": [0, 9, 11], "boostrap": 10, "bootstrap": [0, 1, 2, 10], "bootstrap_ci": 10, "both": [0, 4, 5, 6, 7, 9], "bound": 0, "breast": 9, "brier": 12, "brocker": 12, "br\u00f6cker": [11, 12], "c": [0, 5, 6, 7, 9, 10, 13, 14], "cal_ici": [0, 2], "cal_ici_cox": [0, 2, 7], "cal_metr": [4, 6, 10, 12, 13, 14], "calcualt": 8, "calcuat": 11, "calcul": [0, 1, 8, 9, 10, 11], "calculate_ece_mc": [0, 2, 5], "calculate_metr": [0, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "calib": 5, "calibbr": 11, "calibr": [0, 1, 6, 9, 10, 11, 12, 13, 14], "calibrationmetr": [0, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "call": [4, 5, 6, 7, 12], "callabl": 0, "calmetr": [4, 5, 6, 7, 9, 12], "calster": 4, "calzon": [3, 11, 13, 14], "can": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "cancer": 9, "cannot": 6, "cao": 1, "capabl": 1, "captur": [4, 7], "care": 14, "carlo": 0, "case": [4, 7, 9, 10, 12], "caus": 5, "caution": 8, "cd": 10, "cdot": [4, 9], "certain": 4, "cessi": 6, "chanc": 4, "chang": [4, 5], "characterist": 0, "chart": 0, "check": [0, 6, 12], "chen": 9, "chi": [0, 6], "chi_squar": 0, "choic": [7, 9, 11], "choos": 4, "ci": 10, "class": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "class_1_index": [9, 11], "class_1_sampl": [9, 11], "class_to_calcul": [0, 4, 5, 6, 7, 9, 10, 12, 13, 14], "class_to_plot": [0, 5, 6, 7, 11, 14], "classif": [0, 1, 8, 9, 10, 11, 14], "classifi": 9, "clasto": 11, "clean": 0, "cleveland": 7, "cli": 10, "clinic": [4, 7, 12], "clip": [0, 7], "clone": 10, "close": [0, 4, 7], "closer": 4, "coef": [0, 4, 7, 9, 10, 13, 14], "coef_ci": 0, "coeffici": 0, "color": [0, 6, 7, 12], "column": [0, 10, 13], "com": 10, "comma": 10, "command": [1, 3, 13], "common": [4, 7, 14], "commun": 6, "compar": [0, 6, 12], "comparison": 6, "compon": 9, "comprehens": [1, 8], "comput": [0, 4, 5, 7], "con": [1, 8], "conda": 10, "conf": 5, "confer": 5, "confid": [0, 1, 4, 5, 10, 11], "confind": [0, 5, 6, 7, 11, 14], "confindence_0": 11, "confindence_1": 11, "conjunct": 0, "connect": 0, "consid": [8, 14], "const": 4, "constant": 1, "constraint": 4, "contain": [0, 8, 13], "content": 2, "continu": 9, "control": 4, "convent": 5, "convention": 6, "converg": 4, "convert": [0, 14], "cooper": 5, "correct": [0, 7, 9, 11, 12, 14], "correspond": [0, 8, 10], "could": [5, 6, 7, 11], "count": [0, 5, 6], "covari": 4, "coverag": [1, 8], "cox": [0, 1, 8, 9, 10, 13, 14], "cox_func": 7, "cox_ici": 7, "cox_intercept": [4, 7], "cox_intercept_ci": [4, 7], "cox_intercept_lowerci": 4, "cox_intercept_upperci": 4, "cox_p_correct": 7, "cox_regression_analysi": [0, 2, 4, 7], "cox_slop": [4, 7], "cox_slope_ci": [4, 7], "cox_slope_lowerci": 4, "cox_slope_upperci": 4, "creat": [0, 11, 13], "credit": 1, "cross": [9, 12], "csv": [0, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "csv_file": [10, 13], "cumul": 7, "current": [3, 4], "curv": [0, 1], "custom": 0, "custom_color": [0, 11], "d": [4, 5, 6, 9, 12], "data": [0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "data_load": [0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "data_path": [0, 2, 4, 5, 6, 7, 11, 12], "dataset": [1, 8, 9, 10, 13, 14], "date": 4, "david": 12, "decil": 6, "decompos": 12, "decomposit": 12, "deep": 5, "default": [0, 6, 10], "defin": [5, 12], "degre": [0, 6], "delta": [0, 7], "demonstr": [5, 9, 11], "demostr": [4, 6, 7], "denomin": 9, "densiti": [0, 6, 12], "dep": 4, "depend": [0, 4, 5, 6, 8, 9, 10], "deriv": [9, 10], "describ": 7, "descript": 8, "detail": [0, 4, 8, 13], "detect": 10, "determin": [0, 6, 8], "develop": [3, 10], "deviat": [5, 7, 8], "df": [0, 4, 6], "df_": [5, 7], "diagnosi": 9, "diagnost": 9, "diagram": [0, 1, 5, 6, 7, 8, 10, 13, 14], "dict": 0, "dictionari": 0, "didsr": 10, "differ": [0, 4, 5, 6, 7, 9, 14], "directli": [5, 7, 9, 10, 12], "directori": [3, 10], "disadvantag": [5, 7], "discrimin": 12, "discuss": [9, 11], "diseas": 9, "displai": 0, "distanc": 0, "distribut": [0, 5, 6, 7, 9, 10, 12], "diverg": [9, 12], "divid": [0, 6], "do": [4, 5, 13], "document": 8, "doe": [6, 12], "doesn": [4, 7, 9, 12], "doi": [4, 5, 7, 9, 11, 12], "don": 10, "done": [5, 9], "dot": 0, "dpi": 0, "drop": [5, 9, 11], "drop_indic": [9, 11], "dtype": [9, 11], "due": 8, "dure": 13, "dusenberri": 5, "e": [1, 4, 5, 7, 9, 10, 12], "e_": 6, "each": [0, 6, 8, 10, 11, 13, 14], "easi": [5, 6], "easili": 7, "ec": [0, 1, 4, 7, 8, 9, 10, 13, 14], "ece_": 8, "ece_c": 5, "ece_c_classon": 5, "ece_c_top_class": 5, "ece_equal_width": 5, "ece_h": 5, "ece_h_classon": 5, "ece_h_top_class": 5, "ed": 4, "edg": 0, "effect": 5, "eg": 13, "els": [4, 6, 12], "empir": [0, 7], "encod": 0, "entropi": [9, 12], "enumer": 13, "epsilon": 0, "equal": [0, 4, 5, 6, 11, 14], "equat": 9, "equival": [5, 9], "err": 4, "error": [0, 1, 7, 8, 11, 12], "error_bar": [0, 11, 14], "essenti": [1, 7, 8], "estim": [0, 1, 4, 7, 8, 9], "et": [5, 6], "eta": 9, "etc": [1, 13], "evalu": 0, "evenli": 5, "event": [0, 6], "evid": 12, "exact": [4, 11], "examin": [4, 6, 8], "exampl": [0, 4, 7, 10, 11, 12, 13], "example_data": [4, 5, 6, 7, 10, 11, 12, 13, 14], "exceed": 4, "except": [8, 14], "exepect": 1, "exit": 10, "exp": 0, "expand": 9, "expect": [0, 5, 6, 7, 8], "experi": 5, "experienc": 10, "explan": 8, "explicitli": [5, 6], "extens": [1, 5], "extract": 0, "extrem": 12, "f": [0, 4, 7, 9, 12, 13], "f_": 7, "fact": [9, 12], "factor": [0, 9], "fake": [0, 6], "fake_binary_data_gener": [0, 2, 4, 6, 9, 12], "fakedata_gener": [4, 6, 9, 12], "fals": [0, 4, 5, 6, 7, 9, 10, 11, 12], "fan": 1, "featur": [1, 3], "field": [0, 13], "fig": 7, "figur": 0, "file": [0, 10, 13], "find": [0, 1, 6, 9], "find_optimal_preval": [0, 2, 9], "first": [0, 1, 4, 5, 6, 9, 10, 12], "fit": [0, 1, 4, 6], "fix": [0, 4, 5], "fix_intercept": [0, 4], "fix_slop": [0, 4], "flag": [0, 10], "float": 0, "follow": [0, 3, 5, 6, 9, 10, 11, 12, 13], "foral": 9, "forecast": 11, "format": [0, 10, 13], "formula": 7, "fpr": 0, "frac": [4, 5, 6, 7, 9, 12], "fraction": 0, "freedom": [0, 6], "frequenc": [0, 6], "frequent": 0, "from": [0, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "full": [0, 10], "func": 0, "function": [0, 1, 4, 6, 7, 9, 10, 11, 12, 14], "further": [4, 9], "g": [1, 5], "gabriel": [4, 7], "gener": [0, 4, 6, 8, 9, 10, 12], "generate_data": [0, 2, 4, 6, 9, 12], "generate_miscal_data": 10, "generate_subgroup_data": 10, "generate_wellcal_data": 10, "get_ci": [0, 2], "giger": 9, "git": 10, "github": 10, "give": [4, 5, 7], "given": [0, 8, 9, 11, 13], "glaser": 9, "go": 11, "goe": 5, "good": [0, 5, 6, 7, 11], "granular": 0, "graphic": 0, "greater": 6, "greatli": 7, "grid": 7, "group": [0, 5, 6, 7, 11, 13], "gt": [4, 5], "gu": 9, "gui": [1, 10], "gui_cal_metr": 3, "guid": [1, 4], "gujral": 5, "guo": 5, "h": [0, 5, 6, 9, 10, 13, 14], "ha": [4, 10, 12, 13], "had": 6, "half": 9, "hand": 7, "handl": [0, 14], "hat": [4, 5, 7, 8, 9], "hauskrecht": 5, "have": [0, 1, 4, 6, 7, 8, 9, 10, 11, 14], "have_subgroup": [0, 2, 13], "header": [0, 2, 10], "heavili": 5, "help": 10, "helper": 10, "here": 9, "high": 4, "higher": 0, "hist": [6, 12], "histtyp": [6, 12], "hl": [0, 1, 4, 8, 10, 12, 13, 14], "hl_c_p": 6, "hl_c_pvalu": 6, "hl_c_t": 6, "hl_h_p": 6, "hl_h_pvalu": 6, "hl_h_t": 6, "hope": 1, "horsch": 9, "hosmer": [0, 1, 8, 12], "hosmer_lemeshow_test": [0, 2, 6], "hot": 0, "how": [4, 5, 6, 8, 9], "howev": [5, 6, 7, 9, 12], "hsu": 9, "http": [4, 5, 7, 9, 10, 11, 12], "huang": [4, 7], "hyperparamet": [7, 12], "hypothesi": [6, 12], "i": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ibarra": 5, "ici": [0, 1, 4, 8, 9, 10, 13, 14], "idea": 7, "ideal": 6, "ident": 0, "ig": 7, "ignor": 5, "illur": 10, "imbalanc": 9, "implement": [6, 7], "implicitli": 9, "import": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "improv": 1, "inch": 0, "includ": [0, 1, 4, 8, 10], "incorrect": 6, "increas": [5, 11], "independ": [0, 9], "index": [0, 1, 8], "indic": [0, 4, 6], "industri": 6, "inform": [0, 11], "informat": [4, 7], "initi": 0, "input": [0, 10, 13], "insid": 10, "inspir": 12, "instabl": 0, "instal": [1, 3], "instead": [0, 6, 10], "int": [0, 9, 11], "int_0": [5, 7], "intecept": 1, "integr": [0, 1, 8], "intellig": [5, 9], "intend": [1, 8], "interact": 4, "intercept": [0, 1, 7, 8, 9, 10, 13, 14], "intercept_ci": 0, "interest": [0, 1, 4, 5, 8, 10, 13, 14], "interestingli": 7, "interfac": [1, 13], "intern": 0, "interpol": 0, "interpret": [5, 6, 7, 14], "interv": [0, 1, 4, 10, 11], "intrins": 9, "intuit": [5, 6], "invers": 0, "is_equal_freq": [0, 5, 6], "iter": 4, "itself": 7, "j": [5, 9, 11, 12, 13], "jamia": [4, 7], "jason": 1, "jerfel": 5, "journal": [4, 7, 12], "just": [5, 6, 13], "k": [5, 7, 9], "kei": [0, 1, 4, 6, 9, 12], "kenett": 4, "keyword": 0, "kira": 9, "kl": [9, 12], "kwarg": 0, "kwok": 1, "kxq045": 9, "l": [4, 5, 6, 7, 9, 11], "label": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "last": 10, "lead": [4, 9, 11], "learn": [1, 5, 8], "left": [6, 9], "legend": [5, 6, 7, 12], "lemesbow": 6, "lemeshow": [0, 1, 8, 12], "len": [5, 9, 11], "level": 0, "li": [4, 7], "librari": 11, "like": [0, 4, 7, 12], "likelihood": [4, 9, 11], "limit": 12, "line": [0, 1, 3, 7, 13], "linear": [0, 4, 7], "linear_misc": [0, 2], "linestyl": [6, 12], "list": [0, 4, 6, 10, 12], "literatur": [5, 6], "liu": 9, "ll": 4, "llr": 4, "load": [0, 4, 5, 6, 7, 11], "loader": 10, "loc": [6, 12], "local": [0, 7, 10], "loess": [0, 1, 8, 9, 10, 13, 14], "loess_ici": 7, "loess_ici2": 7, "log": [0, 4, 9], "logical_and": 4, "logist": [0, 4, 6, 7], "logit": [0, 1, 4], "logit_func": [0, 2, 7], "longford": 4, "look": [7, 11], "loop": 13, "loss": [0, 2, 9], "low": [4, 6], "lower": 0, "lowerci": [4, 7, 9, 10, 13, 14], "lowess": 0, "lowess_fit_p": 7, "lowess_fit_p2": 7, "lowess_fit_p2_correct": 7, "lowess_fit_p_correct": 7, "lowess_regression_analysi": [0, 2, 7, 9], "lr": 9, "lt": 5, "lung": 1, "m": [5, 6, 9, 10, 13], "machado": [4, 7], "macheret": [4, 7], "machin": [1, 5, 8], "mai": 5, "main": 7, "make_roc_curv": [0, 2], "manag": 12, "mani": [6, 7, 12, 13], "mannual": 9, "margin": 9, "marker": [7, 9], "mask": [9, 11], "match": 9, "mathbb": [5, 7, 8], "matplolib": 10, "matplotlib": [0, 5, 6, 7, 10, 12], "max": [5, 6, 12], "max_": 5, "max_m": 5, "max_p": 5, "maximum": [0, 1, 4], "mce": [0, 1, 4, 10, 13, 14], "mce_": 8, "mce_c_classon": 5, "mce_c_top_class": 5, "mce_h_classon": 5, "mce_h_top_class": 5, "mean": [0, 4, 5, 6, 7, 8, 9, 11, 12], "meaning": [1, 8], "measur": [0, 4, 5, 7, 12], "medic": [4, 7, 9], "medicin": 7, "messag": 10, "meteorolog": 12, "method": [0, 4, 5, 6, 7, 9, 11], "metric": [1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "metrics_c": 13, "metz": 9, "mi": [9, 11], "might": [9, 11], "min_": 9, "minim": [0, 9], "miscal_dataload": 7, "miscal_funct": 0, "miscal_scal": [0, 10], "miscalibr": [0, 4, 7, 10, 12], "mislead": 11, "mle": 4, "model": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "moder": [4, 8], "modern": 5, "modifi": 5, "modul": 2, "monoton": 9, "mont": 0, "more": [0, 4, 8, 10, 11, 13], "most": [5, 7, 8, 14], "much": 5, "multi": [0, 1, 8, 10, 14], "multiclass": [0, 1], "multipl": [0, 6], "must": [0, 10], "n": [4, 5, 7, 9, 10, 12, 13], "n_bootstrap": 10, "n_class": 0, "n_m": 6, "n_point": 0, "n_sampl": 0, "naeini": 5, "name": [0, 12], "nan": [0, 4], "nbin": 0, "ndarrai": 0, "necessari": 11, "need": [0, 3, 4, 6, 7, 8, 10], "network": 5, "neural": 5, "new": [0, 4, 5, 9], "nicegui": [3, 10], "nixon": 5, "non": [6, 7, 12], "none": [0, 5, 11], "nonrobust": 4, "normal": 12, "note": 0, "notebook": [4, 8, 9, 10, 14], "notic": [5, 6, 7, 9, 10], "now": 14, "np": [4, 5, 6, 7, 9, 11, 12, 13], "null": [4, 6, 12], "num_bin": [0, 5, 6, 7, 10, 11, 13, 14], "number": [0, 4, 5, 6, 10], "numer": 0, "numpi": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "o_": 6, "object": 0, "observ": [0, 4, 5, 6, 8], "obtain": 5, "oct": 4, "ocz228": [4, 7], "odd": 4, "off": 7, "offer": [1, 6], "often": 6, "ohno": [4, 7], "one": [0, 10, 13], "ones": [9, 11], "onli": [0, 1, 4, 5, 8, 10, 11, 13, 14], "onlin": 4, "oper": 0, "opposit": [5, 6], "optim": [0, 9], "optimal_preval": [0, 9], "optimal_prevalence_adjust": [0, 2], "option": [0, 4, 6, 10], "order": [0, 6, 10, 13], "org": [4, 5, 7, 9, 11, 12], "origin": [4, 10], "other": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13], "otherwis": 0, "outcom": [0, 4, 9], "output": [0, 9, 10], "over": [4, 5, 8], "overal": [4, 10, 13], "overconfid": 11, "p": [0, 1, 4, 5, 7, 8, 9, 10, 13, 14], "p_": [4, 5, 14], "p_i": [7, 9, 12], "p_valu": [0, 12], "packag": [1, 2, 4, 10, 11, 12, 13], "pakdaman": 5, "paramet": 0, "parametr": [6, 7, 12], "part": 5, "particular": 5, "particularli": 1, "pass": 0, "path": [0, 10], "patient": 12, "peopl": 7, "pepe": 9, "per": 0, "percentil": 0, "perfect": 4, "perfectli": 7, "perform": [0, 4, 9, 10, 13], "perform_pervalance_adjust": [0, 9], "perhap": 5, "petrick": 9, "pezeshk": 9, "piegorsch": 4, "pip": [3, 10], "pleas": [1, 8], "pleiss": 5, "plot": [0, 5, 7, 8, 10, 11, 13, 14], "plot_bin": 10, "plot_reliability_diagram": [0, 2, 7, 11, 14], "plot_roc_curv": [0, 2], "plote": 7, "plt": [5, 6, 7, 12], "png": 10, "point": 0, "polynomi": 7, "poor": 0, "poorli": 0, "popul": [1, 8, 9, 13], "posit": 0, "posterior": [9, 11], "power": [6, 12], "pp": 4, "practic": 9, "predict": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14], "predictor": 4, "preform": [1, 13], "prepar": 10, "preprocess": 0, "presenc": 0, "present": 0, "preval": [0, 1, 4, 8, 10, 11, 12], "prevalecn": 10, "prevalence_adjust": 10, "previou": 14, "print": [0, 4, 5, 6, 7, 9, 10, 12, 13], "print_result": [0, 4, 7], "pro": [1, 8], "prob": [0, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14], "proba": 13, "proba_0": [0, 10, 13], "proba_1": [0, 10, 13], "proba_adjust": 9, "proba_class1": 7, "proba_n": [10, 13], "probabilist": [0, 5, 6, 12], "probabiliticst": 0, "probabl": [0, 4, 5, 6, 7, 8, 9, 10, 11, 14], "problem": [0, 5, 6, 8, 9, 10, 11, 14], "proce": 11, "proceed": 5, "process": [1, 10], "produc": 9, "prognost": 4, "program": 10, "project": 1, "proof": 6, "proper": 12, "proport": 0, "propos": [5, 12], "prove": 9, "provid": [0, 1, 6, 8, 9, 10, 11, 12, 13], "pseudo": 4, "purpos": 10, "py": [3, 10, 13], "pyplot": [5, 6, 7, 12], "python": [1, 3], "q": 5, "qian": 1, "qj": 12, "quantifi": 7, "quarterli": 12, "quick": 1, "quickli": [5, 6], "quickstart": 13, "r": [4, 6, 7, 12], "radiologi": 9, "random": [4, 6, 9, 11, 12], "random_se": 10, "rang": [4, 5, 6, 12], "range_of_bin": 5, "rate": 0, "ratio": [9, 11], "raw": 0, "re": 9, "read": [1, 13], "reader": 5, "real": 13, "rearrang": 9, "reason": [5, 11], "recalibr": 4, "receiv": 0, "recommend": [0, 5, 6, 8, 12], "red": 11, "refer": [1, 8], "regress": [0, 4, 6, 7], "regular": 14, "reject": 6, "relat": [7, 11], "relationship": 9, "reli": [5, 9], "reliability_0": 11, "reliability_1": 11, "reliability_diagram": [0, 2, 4, 5, 6, 7, 11, 12, 14], "reliabl": [0, 1, 5, 6, 7, 8, 10, 12, 13, 14], "relibail": 10, "remind": 5, "remov": 0, "removing_nan": [0, 2], "replac": [0, 9, 11], "repositori": 10, "reprens": [1, 8], "repres": [0, 1, 8], "represent": 5, "requir": [6, 7, 10, 12], "resampl": 0, "research": 9, "residu": [0, 4], "resolut": [0, 9, 12], "respect": 9, "rest": [1, 8, 14], "result": [0, 4, 5, 6, 7, 8, 12, 13], "return": [0, 5, 9], "return_fig": 0, "return_numpi": [0, 4, 5, 6, 12], "reveal": 11, "reweight": 0, "right": [6, 9, 12], "risk": 4, "robust": 7, "roc": 0, "roc_auc": 0, "roc_curv": 0, "rough": 5, "round": [6, 12], "row": 0, "royal": 12, "ruggeri": 4, "rule": 12, "run": [0, 1, 10, 13], "sahin": 9, "sai": 9, "same": [0, 5, 7, 9, 10, 13, 14], "sampl": [0, 5, 6, 7, 10, 11, 14], "sample_s": [0, 4, 6, 12], "samuelson": 9, "save": [0, 10], "save_diagram_output": 10, "save_metr": 10, "save_path": 0, "save_plot": 10, "scale": [0, 9], "scatter": 7, "scatterplot": [0, 7], "scheme": [5, 6], "scipi": [0, 10, 11], "scope": 4, "score": [0, 1, 4, 6, 9, 10, 11, 13, 14], "script": [1, 10], "search": 9, "second": [0, 5, 12], "section": [5, 9, 11], "see": [4, 5, 6, 8, 10, 11, 12, 13, 14], "seed": [4, 6, 9, 12], "select": 0, "self": 0, "sens": [8, 11], "sensit": 0, "separ": 10, "seri": [11, 14], "set": [5, 9, 11], "sever": 6, "shape": 0, "shift": [1, 4, 8, 11, 12], "should": [0, 6, 7, 8, 10, 13], "show": [0, 5, 6, 10, 11, 12], "shown": [4, 5, 6, 12], "signific": [0, 6], "sim": [6, 7], "similar": [5, 6], "similarili": 5, "similarli": [4, 5], "simpl": [5, 6, 13], "simpler": 5, "simpli": [3, 5, 10], "simplic": 5, "simul": [0, 13], "simulated_data_subgroup": [10, 13], "simulated_data_subgroup_result": 10, "simulated_misdata": [7, 10], "simulated_misdata_result": 10, "simulated_welldata": [4, 5, 6, 7, 10, 11, 12, 14], "simulated_welldata_diagram_output": 10, "simulated_welldata_result": 10, "simulation_s": [4, 6, 12], "sinc": [4, 6, 9, 11], "situat": 12, "size": [0, 1, 9, 11], "size_c": 6, "size_h": 6, "skip": 7, "slope": [0, 1, 8], "small": 0, "smith": 11, "smooth": [0, 7], "smoothed_proba": 0, "so": 9, "societi": 12, "softmax": [0, 11], "softmax_to_logit": [0, 2, 11], "sole": 8, "some": [4, 5, 6, 12, 13], "sort": [0, 7], "sorted_proba": 0, "sourc": 0, "space": [0, 1, 8], "span": [0, 7], "special": 11, "specif": [8, 9, 10], "specifi": [0, 6, 8, 10, 14], "speigelhalt": 12, "spieegelhalt": 1, "spiegelhalt": [0, 1, 8], "spiegelhalter_z_test": [0, 2, 12], "spiegelhalterz": [0, 10, 12, 13, 14], "spline": 7, "sqrt": 12, "squ": 4, "squar": [0, 6, 12], "standard": [6, 12], "start": 1, "stat08078": 4, "statement": 6, "statist": [0, 1, 4, 7, 9, 12], "statistician": 12, "statsmodel": 10, "statsref": 4, "std": 4, "step": [0, 6, 12], "steyerberg": [4, 7], "still": [4, 6, 7, 11, 14], "str": [0, 6, 12], "strongli": 8, "structur": 0, "studi": 6, "subgroup": [0, 1, 2, 10], "subgroup_1": [0, 10, 13], "subgroup_1_group_a": [10, 13], "subgroup_1_group_b": [10, 13], "subgroup_2": [0, 10, 13], "subgroup_class": 13, "subgroup_column": 13, "subgroup_indic": [0, 2, 13], "subgroup_m": [10, 13], "subgroups_class": [0, 2, 13], "subgroups_index": [0, 2, 13], "subject": 4, "submodul": 2, "success": 11, "suffici": [1, 8, 12], "suggest": [0, 6, 8], "suit": 1, "sum": 5, "sum_": [5, 6, 7, 9, 12], "summari": [0, 1], "sun": 5, "support": [0, 3], "t": [0, 4, 5, 6, 7, 9, 10, 12], "take": [0, 8], "tannen": 5, "target": 4, "task": 1, "techniqu": 4, "tell": 4, "tempresult": [4, 6, 12], "term": [5, 7, 9, 12], "test": [0, 1, 8, 10, 11], "test_dataload": 11, "text": [5, 6, 7, 9, 12, 14], "th": [5, 6, 7], "than": [4, 6], "thei": [5, 7], "them": [0, 8, 10], "theorem": 9, "theoret": 1, "theori": 6, "therefor": [5, 6, 7, 8, 9], "thi": [0, 1, 4, 5, 6, 9, 10, 13], "thing": 13, "those": 0, "through": [7, 13], "tian": 9, "time": [4, 9], "titl": [0, 5, 6, 7, 11, 12, 14], "tool": [0, 1, 6, 10, 11], "top": [0, 1, 5, 8, 10, 11, 14], "topclass": [5, 9, 10, 13, 14], "total": [5, 6], "tpr": 0, "tradition": 5, "train": 6, "tran": 5, "transform": [0, 8, 9, 10, 14], "transform_topclass": [0, 2, 14], "transformed_data": 14, "treat": [0, 10], "trend": 4, "trial": [11, 12], "true": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "truth": 7, "try": [7, 10], "tune": 12, "tupl": 0, "turn": 10, "tutori": [4, 7, 10], "two": [4, 5, 6, 9, 13], "tygert": 5, "type": [0, 4, 5, 7], "typic": [0, 6], "u": [4, 5, 11], "ubgroup_2": 10, "uitliti": 0, "under": [0, 3, 4, 8, 12], "understand": 6, "uniqu": 0, "up": 5, "upper": [0, 6, 12], "upperci": [4, 7, 9, 10, 13, 14], "us": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 14], "usag": 10, "useag": 10, "user": [4, 14], "usual": [4, 6, 9], "util": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "v": [1, 4, 5, 8, 10, 14], "v29i1": 5, "valid": 6, "valu": [0, 1, 4, 10, 11, 13, 14], "var": 12, "variabl": 4, "varianc": 12, "variou": [0, 1], "verbos": [10, 13], "veri": [6, 11, 12], "versa": 4, "version": [0, 5], "vi": [2, 7, 11, 14], "vice": 4, "visual": [0, 1, 8, 10, 11], "vline": [6, 12], "vstack": 11, "w": [4, 5, 6, 7, 9], "wa": 12, "waf993": 11, "wai": [4, 5, 6, 7, 13, 14], "want": [5, 10], "warn": 4, "we": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "weak": 4, "weather": 11, "wed": 4, "weight": [0, 5, 7], "weinberg": 5, "well": [0, 4, 5, 6, 7, 10, 11, 12, 14], "wellcal_dataload": [4, 5, 6, 7, 11, 12], "when": [0, 5, 6, 8, 9, 10, 14], "where": [0, 5, 6, 7, 9, 10, 11, 12, 13], "whether": [0, 4, 6, 8, 9, 10, 12, 13, 14], "which": [0, 4, 5, 7, 8, 9, 10, 11, 12], "while": [4, 5, 6, 7], "who": 12, "whole": 10, "wide": [0, 5, 6], "width": [5, 6, 7], "wilei": 4, "wilson": [0, 11], "window": 7, "within": [0, 9, 13], "without": 0, "word": 9, "work": [1, 6, 8, 10, 14], "workstat": 9, "world": 13, "wrong": 6, "x": [0, 4, 6, 7, 9, 12], "x1": 4, "x_1": 9, "x_2": 9, "x_i": 12, "xlabel": [5, 6, 7, 12], "xu": 5, "y": [0, 4, 5, 6, 7, 8, 9, 12], "y_": 5, "y_i": 9, "y_predict": 0, "y_proba": 0, "y_true": 0, "ylabel": [6, 7, 12], "ylim": 5, "ymax": [6, 12], "ymin": [6, 12], "you": [1, 3, 4, 7, 8, 10, 13, 14], "your": [1, 10], "z": [0, 1, 4, 8, 9], "z_score": [0, 12], "zero": 5, "zhang": 5}, "titles": ["calzone package", "Welcome to the documentation for calzone", "calzone", "Running GUI", "COX calibration analysis", "Exepected Calibration Error(ECE) and Maximum Calibration Error (MCE)", "Hosmer-Lemeshow test (HL test)", "Integrated Calibration Index (ICI)", "Summary and guide for calzone", "Prevalence adjustment", "Quick Start", "Reliability diagram", "Spiegelhalter\u2019s Z-test", "Subgroup analysis", "Multiclass extension"], "titleterms": {"": 12, "adjust": 9, "analysi": [4, 13], "background": [4, 5, 6, 7, 12], "bin": 5, "calcul": [4, 5, 6, 7, 12], "calibr": [4, 5, 7, 8], "calzon": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12], "class": 9, "command": 10, "con": [4, 5, 6, 7, 12], "constant": 9, "content": [0, 1], "cox": [4, 7], "curv": 7, "diagram": 11, "document": 1, "ec": 5, "error": 5, "estim": 5, "exepect": 5, "extens": 14, "fit": 7, "function": 5, "gui": 3, "guid": 8, "hl": 6, "hosmer": 6, "ici": 7, "index": 7, "instal": 10, "intecept": 4, "integr": 7, "intercept": 4, "interest": 9, "interfac": 10, "lemeshow": 6, "line": 10, "loess": 7, "logit": 9, "maximum": 5, "mce": 5, "metric": [0, 8], "modul": 0, "multiclass": 14, "p": [6, 12], "packag": 0, "preform": 9, "preval": 9, "pro": [4, 5, 6, 7, 12], "python": 10, "quick": 10, "refer": [4, 5, 6, 7, 9, 11, 12], "reliabl": 11, "run": 3, "score": 12, "shift": 9, "size": [4, 5, 6, 12], "slope": 4, "spieegelhalt": 12, "spiegelhalt": 12, "start": 10, "statist": 6, "subgroup": 13, "submodul": 0, "summari": 8, "test": [4, 6, 12], "theoret": [4, 5, 6, 7, 12], "us": [7, 10, 12], "util": 0, "valu": [6, 12], "vi": 0, "visual": 7, "welcom": 1, "z": 12}})
\ No newline at end of file
+Search.setIndex({"alltitles": {"COX calibration analysis": [[4, null]], "Calculating Cox slope and intercept with calzone": [[4, "Calculating-Cox-slope-and-intercept-with-calzone"]], "Calculating ECE and MCE with calzone": [[5, "Calculating-ECE-and-MCE-with-calzone"]], "Calculating HL test statistics and p-value with calzone": [[6, "Calculating-HL-test-statistics-and-p-value-with-calzone"]], "Calculating LOESS ICI and COX ICI using calzone": [[7, "Calculating-LOESS-ICI-and-COX-ICI-using-calzone"]], "Calculating the Spieegelhalter Z score and p-value using calzone": [[12, "Calculating-the-Spieegelhalter-Z-score-and-p-value-using-calzone"]], "Command line interface": [[10, "Command-line-interface"]], "Cons of Cox calibration analysis": [[4, "Cons-of-Cox-calibration-analysis"]], "Cons of ECE and MCE": [[5, "Cons-of-ECE-and-MCE"]], "Cons of HL Test": [[6, "Cons-of-HL-Test"]], "Cons of ICI": [[7, "Cons-of-ICI"]], "Cons of Spiegelhalter\u2019s Z test": [[12, "Cons-of-Spiegelhalter's-Z-test"]], "Contents:": [[1, null]], "ECE and MCE as function of bin size": [[5, "ECE-and-MCE-as-function-of-bin-size"]], "Estimated ECE and MCE": [[5, "Estimated-ECE-and-MCE"]], "Exepected Calibration Error(ECE) and Maximum Calibration Error (MCE)": [[5, null]], "Guide to calzone and calibration metrics": [[8, "Guide-to-calzone-and-calibration-metrics"]], "Hosmer-Lemeshow test (HL test)": [[6, null]], "Installation": [[10, "Installation"]], "Integrated Calibration Index (ICI)": [[7, null]], "Module contents": [[0, "module-calzone"]], "Multiclass extension": [[14, null]], "Preform prevalence adjustment in calzone": [[9, "Preform-prevalence-adjustment-in-calzone"]], "Prevalence adjustment": [[9, null]], "Prevalence adjustment and constant shift in logit of class-of-interest": [[9, "Prevalence-adjustment-and-constant-shift-in-logit-of-class-of-interest"]], "Pros of Cox calibration analysis": [[4, "Pros-of-Cox-calibration-analysis"]], "Pros of ECE and MCE": [[5, "Pros-of-ECE-and-MCE"]], "Pros of HL test": [[6, "Pros-of-HL-test"]], "Pros of ICI": [[7, "Pros-of-ICI"]], "Pros of Spiegelhalter\u2019s Z test": [[12, "Pros-of-Spiegelhalter's-Z-test"]], "Quick Start": [[10, null]], "Reference": [[5, "Reference"], [6, "Reference"], [7, "Reference"], [12, "Reference"]], "References": [[4, "References"], [9, "References"], [11, "References"]], "Reliability diagram": [[11, null]], "Running GUI": [[3, null]], "Size of COX slope and intecept test": [[4, "Size-of-COX-slope-and-intecept-test"]], "Size of HL test": [[6, "Size-of-HL-test"]], "Spiegelhalter\u2019s Z-test": [[12, null]], "Subgroup analysis": [[13, null]], "Submodules": [[0, "submodules"]], "Summary and guide for calzone": [[8, null]], "Testing the size of Spiegelhalter\u2019s z test": [[12, "Testing-the-size-of-Spiegelhalter's-z-test"]], "Theoretical Background": [[4, "Theoretical-Background"], [5, "Theoretical-Background"], [6, "Theoretical-Background"], [7, "Theoretical-Background"]], "Theoretical background": [[12, "Theoretical-background"]], "Using calzone in python": [[10, "Using-calzone-in-python"]], "Visualization of the fitted curve": [[7, "Visualization-of-the-fitted-curve"]], "Welcome to the documentation for calzone": [[1, null]], "calzone": [[2, null]], "calzone package": [[0, null]], "calzone.metrics module": [[0, "module-calzone.metrics"]], "calzone.utils module": [[0, "module-calzone.utils"]], "calzone.vis module": [[0, "module-calzone.vis"]]}, "docnames": ["calzone", "index", "modules", "notebooks/GUI", "notebooks/cox", "notebooks/ece_mce", "notebooks/hl_test", "notebooks/ici", "notebooks/metrics_summary", "notebooks/prevalence_adjustment", "notebooks/quickstart", "notebooks/reliability_diagram", "notebooks/spiegelhalter_z", "notebooks/subgroup", "notebooks/topclass"], "envversion": {"nbsphinx": 4, "sphinx": 63, "sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "sphinx.ext.intersphinx": 1, "sphinx.ext.todo": 2, "sphinx.ext.viewcode": 1}, "filenames": ["calzone.rst", "index.rst", "modules.rst", "notebooks/GUI.ipynb", "notebooks/cox.ipynb", "notebooks/ece_mce.ipynb", "notebooks/hl_test.ipynb", "notebooks/ici.ipynb", "notebooks/metrics_summary.ipynb", "notebooks/prevalence_adjustment.ipynb", "notebooks/quickstart.ipynb", "notebooks/reliability_diagram.ipynb", "notebooks/spiegelhalter_z.ipynb", "notebooks/subgroup.ipynb", "notebooks/topclass.ipynb"], "indexentries": {"__init__() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.__init__", false]], "__init__() (calzone.utils.data_loader method)": [[0, "calzone.utils.data_loader.__init__", false], [0, "id0", false]], "__init__() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.__init__", false]], "abraitary_miscal() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.abraitary_miscal", false]], "alpha_val (calzone.utils.fake_binary_data_generator attribute)": [[0, "calzone.utils.fake_binary_data_generator.alpha_val", false]], "apply_prevalence_adjustment() (in module calzone.utils)": [[0, "calzone.utils.apply_prevalence_adjustment", false]], "beta_val (calzone.utils.fake_binary_data_generator attribute)": [[0, "calzone.utils.fake_binary_data_generator.beta_val", false]], "bootstrap() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.bootstrap", false]], "cal_ici() (in module calzone.metrics)": [[0, "calzone.metrics.cal_ICI", false]], "cal_ici_cox() (in module calzone.metrics)": [[0, "calzone.metrics.cal_ICI_cox", false]], "calculate_ece_mce() (in module calzone.metrics)": [[0, "calzone.metrics.calculate_ece_mce", false]], "calculate_metrics() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.calculate_metrics", false]], "calibrationmetrics (class in calzone.metrics)": [[0, "calzone.metrics.CalibrationMetrics", false]], "calzone": [[0, "module-calzone", false]], "calzone.metrics": [[0, "module-calzone.metrics", false]], "calzone.utils": [[0, "module-calzone.utils", false]], "calzone.vis": [[0, "module-calzone.vis", false]], "cox_regression_analysis() (in module calzone.metrics)": [[0, "calzone.metrics.cox_regression_analysis", false]], "data (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.data", false]], "data_loader (class in calzone.utils)": [[0, "calzone.utils.data_loader", false]], "data_path (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.data_path", false]], "fake_binary_data_generator (class in calzone.utils)": [[0, "calzone.utils.fake_binary_data_generator", false]], "find_optimal_prevalence() (in module calzone.utils)": [[0, "calzone.utils.find_optimal_prevalence", false]], "generate_data() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.generate_data", false]], "get_ci() (in module calzone.metrics)": [[0, "calzone.metrics.get_CI", false]], "have_subgroup (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.have_subgroup", false]], "header (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.Header", false]], "hosmer_lemeshow_test() (in module calzone.metrics)": [[0, "calzone.metrics.hosmer_lemeshow_test", false]], "labels (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.labels", false]], "linear_miscal() (calzone.utils.fake_binary_data_generator method)": [[0, "calzone.utils.fake_binary_data_generator.linear_miscal", false]], "logit_func() (in module calzone.metrics)": [[0, "calzone.metrics.logit_func", false]], "loss() (in module calzone.utils)": [[0, "calzone.utils.loss", false]], "lowess_regression_analysis() (in module calzone.metrics)": [[0, "calzone.metrics.lowess_regression_analysis", false]], "make_roc_curve() (in module calzone.utils)": [[0, "calzone.utils.make_roc_curve", false]], "module": [[0, "module-calzone", false], [0, "module-calzone.metrics", false], [0, "module-calzone.utils", false], [0, "module-calzone.vis", false]], "optimal_prevalence_adjustment() (calzone.metrics.calibrationmetrics method)": [[0, "calzone.metrics.CalibrationMetrics.optimal_prevalence_adjustment", false]], "plot_reliability_diagram() (in module calzone.vis)": [[0, "calzone.vis.plot_reliability_diagram", false]], "plot_roc_curve() (in module calzone.vis)": [[0, "calzone.vis.plot_roc_curve", false]], "probs (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.probs", false]], "reliability_diagram() (in module calzone.utils)": [[0, "calzone.utils.reliability_diagram", false]], "removing_nan() (in module calzone.utils)": [[0, "calzone.utils.removing_nan", false]], "softmax_to_logits() (in module calzone.utils)": [[0, "calzone.utils.softmax_to_logits", false]], "spiegelhalter_z_test() (in module calzone.metrics)": [[0, "calzone.metrics.spiegelhalter_z_test", false]], "subgroup_indices (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroup_indices", false]], "subgroups (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups", false]], "subgroups_class (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups_class", false]], "subgroups_index (calzone.utils.data_loader attribute)": [[0, "calzone.utils.data_loader.subgroups_index", false]], "transform_topclass() (calzone.utils.data_loader method)": [[0, "calzone.utils.data_loader.transform_topclass", false], [0, "id1", false]]}, "objects": {"": [[0, 0, 0, "-", "calzone"]], "calzone": [[0, 0, 0, "-", "metrics"], [0, 0, 0, "-", "utils"], [0, 0, 0, "-", "vis"]], "calzone.metrics": [[0, 1, 1, "", "CalibrationMetrics"], [0, 3, 1, "", "cal_ICI"], [0, 3, 1, "", "cal_ICI_cox"], [0, 3, 1, "", "calculate_ece_mce"], [0, 3, 1, "", "cox_regression_analysis"], [0, 3, 1, "", "get_CI"], [0, 3, 1, "", "hosmer_lemeshow_test"], [0, 3, 1, "", "logit_func"], [0, 3, 1, "", "lowess_regression_analysis"], [0, 3, 1, "", "spiegelhalter_z_test"]], "calzone.metrics.CalibrationMetrics": [[0, 2, 1, "", "__init__"], [0, 2, 1, "", "bootstrap"], [0, 2, 1, "", "calculate_metrics"], [0, 2, 1, "", "optimal_prevalence_adjustment"]], "calzone.utils": [[0, 3, 1, "", "apply_prevalence_adjustment"], [0, 1, 1, "", "data_loader"], [0, 1, 1, "", "fake_binary_data_generator"], [0, 3, 1, "", "find_optimal_prevalence"], [0, 3, 1, "", "loss"], [0, 3, 1, "", "make_roc_curve"], [0, 3, 1, "", "reliability_diagram"], [0, 3, 1, "", "removing_nan"], [0, 3, 1, "", "softmax_to_logits"]], "calzone.utils.data_loader": [[0, 4, 1, "", "Header"], [0, 2, 1, "id0", "__init__"], [0, 4, 1, "", "data"], [0, 4, 1, "", "data_path"], [0, 4, 1, "", "have_subgroup"], [0, 4, 1, "", "labels"], [0, 4, 1, "", "probs"], [0, 4, 1, "", "subgroup_indices"], [0, 4, 1, "", "subgroups"], [0, 4, 1, "", "subgroups_class"], [0, 4, 1, "", "subgroups_index"], [0, 2, 1, "id1", "transform_topclass"]], "calzone.utils.fake_binary_data_generator": [[0, 2, 1, "", "__init__"], [0, 2, 1, "", "abraitary_miscal"], [0, 4, 1, "", "alpha_val"], [0, 4, 1, "", "beta_val"], [0, 2, 1, "", "generate_data"], [0, 2, 1, "", "linear_miscal"]], "calzone.vis": [[0, 3, 1, "", "plot_reliability_diagram"], [0, 3, 1, "", "plot_roc_curve"]]}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "class", "Python class"], "2": ["py", "method", "Python method"], "3": ["py", "function", "Python function"], "4": ["py", "attribute", "Python attribute"]}, "objtypes": {"0": "py:module", "1": "py:class", "2": "py:method", "3": "py:function", "4": "py:attribute"}, "terms": {"": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11], "0": [0, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "000": [4, 10, 13], "00037947714112375366": 13, "001": [0, 7, 10], "0012819521292332472": 14, "002": 10, "003": 10, "0038637011857438034": 14, "004": 10, "0046758796391944": 9, "005": 10, "00558856942568957": [7, 10, 13], "005610391483826338": [4, 7, 10, 13], "006": [10, 13], "007": 10, "007508966220374058": 9, "008": 10, "008733966945443138": [5, 10, 13], "008745511902314453": 9, "009": [10, 13], "009313116424641145": 14, "009458033653818828": [5, 10, 13, 14], "009458033653818974": 14, "009608653731328977": [5, 10, 13, 14], "009608653731329372": 14, "01": [10, 13], "010355911839501922": 9, "011": 10, "012": [10, 13], "01208775955804901": [5, 10, 13], "013671230516636386": 9, "014081013182402267": 9, "016": 10, "017": 10, "018": 10, "019": 10, "02": [4, 10, 13], "020": 10, "020515047600205394": 14, "020515047600205505": [5, 10, 13, 14], "021": [10, 13], "022": [9, 10], "023": [10, 13], "02324031223486256": [5, 10, 13], "025": [4, 10], "028": 10, "029": 4, "029403495083063648": 9, "029652031234071": 14, "03": 10, "031": 10, "032": 10, "03353272525376893": [4, 7, 10, 13], "034": [4, 10, 13], "035": 10, "036": 10, "037": [10, 13], "038": [10, 13], "039": [10, 13], "039000000000000035": 4, "03926468843081932": 14, "03926468843081976": [5, 10, 13, 14], "04": 9, "040": 4, "041": 10, "042": [10, 13], "043": 10, "044": 10, "04497652296600376": [4, 7, 10, 13], "045": [10, 13], "0450": 4, "04599": 5, "046": 10, "047": 6, "048": [10, 13], "04848338618970194": [5, 10, 13], "049": [10, 12, 13], "05": [0, 6, 12], "050": 10, "051": [4, 10, 13], "0512096313774626": [4, 7, 10, 13], "052": 10, "054": 10, "055": [6, 10, 13], "056": 10, "05600000000000005": 4, "058": 10, "062": 10, "063": [10, 13], "064": [10, 13], "065": [10, 13], "066": 10, "068": 10, "06894458205508802": 9, "069": 10, "06991428582761099": 13, "07": [0, 10, 13], "071": 10, "072": 10, "073": 10, "07356445428053172": 7, "074": [10, 13], "07429481165606829": 13, "07479369479609524": 13, "075": [10, 13], "076": 10, "0765892898243467": 13, "07658928982434714": 13, "07692218401743334": 7, "077": [10, 13], "07746407648179383": 13, "07796623141885761": 13, "078": [10, 13], "07872518570110512": 13, "079": [10, 13], "07961758926734244": 9, "08": 10, "081": 10, "083": 10, "0830845954424": 14, "084": 10, "0841517729106883": 9, "0841517733462589": 9, "085": 10, "086": 10, "087": 10, "0884212323912401": 14, "09": 10, "091": 10, "092": 10, "0962280216661371": 9, "0984122810555748": 7, "0x7fe048e8b470": 5, "1": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "10": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "1000": [0, 4, 6, 10, 12], "10000": [5, 6, 12], "1002": [4, 7, 12], "101": 9, "1016": 9, "1027": 10, "1043": 6, "1069": 6, "107": 10, "108": 10, "109": 10, "1093": [4, 7, 9], "11": 9, "11017646753618837": 14, "111": 10, "1135847825485915": 14, "1138": [10, 13], "114": 10, "115": 10, "1156": 10, "116": [6, 10], "117": 6, "1175": 11, "1177": 9, "11820": 9, "12": 9, "123": [4, 6, 9, 10, 12, 13], "12348577118577644": [4, 7, 10, 13], "124": 10, "125": 10, "126": 10, "127": 10, "12775157222121533": 9, "1292": 10, "13": [10, 11], "1322110153978738": 14, "1327565894838103": 13, "133": [10, 13], "135": [10, 12], "1355": 10, "139": 10, "1393": 10, "1394": 9, "14": 11, "140": [10, 13], "14045600565696226": 13, "1409": 9, "14090872416947742": 13, "141": [10, 13], "1446": 9, "145": 10, "1457": 9, "15": [4, 7, 9, 10, 11, 14], "150": 0, "151": 10, "1512": 12, "1519": 12, "152": 10, "155": 10, "158": 10, "16": 6, "1609": 5, "16250572519432438": 13, "163": [10, 13], "168": 10, "1706": 5, "171": [10, 13], "1714434139853": 13, "175": 10, "18": [10, 13], "182": 10, "1844": 10, "185": 10, "1857": 10, "1927": 4, "1928": 4, "1958": 4, "1979": 7, "1980": 6, "1986": 12, "1997": 6, "1e": [0, 7], "1st": 4, "2": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "20": [6, 12], "2007": 11, "2008": [9, 12], "2009": 12, "2010": 9, "2011": 9, "2015": 5, "2017": 5, "2018": [4, 9], "2019": [5, 7], "202": 10, "2020": [4, 5, 7, 9], "2022": 5, "2024": 4, "203": 10, "204": 10, "205": 10, "21": [7, 10], "210": 4, "212": 4, "214": 10, "22": 11, "2246": [10, 13], "232": 10, "24": 10, "244": 10, "249": 10, "26": 10, "262": 4, "27": [4, 7, 9, 10, 13], "273": 10, "28": 10, "29": [5, 10], "2_": 6, "2p_i": 12, "3": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "300": 5, "31": 10, "319": 10, "327": [10, 13], "33": 10, "3300531914893617": 9, "3341": 10, "335": 10, "34": [4, 10, 12], "3465": 4, "352": [10, 13], "35209071874348785": [6, 10, 13], "368": 7, "37": 10, "376": [10, 13], "37632691618773545": 14, "3763269161877356": [10, 12, 13], "38": 7, "385628": 4, "39": [4, 5, 6, 7, 10, 12, 14], "3900": 10, "391": 10, "392": 10, "396": 10, "4": [0, 4, 5, 6, 7, 9, 10, 12, 14], "40": 11, "4051": 7, "4065": 7, "42": 11, "429": [10, 13], "43": 11, "4385762101924": 13, "439": [10, 13], "443": 10, "4436": 4, "4438": 4, "454": 10, "456": 12, "463": 10, "469": 10, "470": 10, "478": [10, 13], "47838663128188996": 13, "481": 10, "494": 10, "495": 10, "497": 10, "49863799264980607": 9, "4998": 4, "4999": 4, "5": [0, 4, 5, 6, 7, 9, 10, 11, 12, 14], "50": 11, "5000": [4, 9, 10], "507": [10, 13], "5071793536874274": 13, "508": 10, "524": 10, "526": 10, "53": 4, "5359720760929648": 13, "536": [10, 13], "539": 10, "554": 10, "569": 10, "577": 10, "581": 10, "584": 10, "5958290924064796": 9, "6": [0, 4, 5, 6, 10, 14], "611": 10, "621": [4, 7], "626": 10, "631": 10, "633": [4, 7], "637": 10, "638": 10, "641": [10, 13], "643": 12, "651": 11, "661": 11, "664": 10, "666": 10, "668": [10, 13], "67": 10, "681": 10, "686": 10, "6897839569176842": 9, "694947603203135": [6, 10, 13], "695": [10, 13], "696": [10, 13], "698": 10, "7": [0, 4, 6, 10], "7066738713391099": [10, 12, 13], "7066738713391101": 14, "707": [10, 13], "716": 10, "727": 10, "729": 10, "732": [10, 13], "74": 7, "7486601568004448": 14, "778": 10, "779": 10, "781": 10, "7837388214288888": 9, "794": 10, "8": [0, 5, 6, 10, 13], "813": 10, "818": 10, "8281": 7, "829": 7, "836": 7, "842": [10, 13], "87": 9, "8754203499121678": 9, "8754203499121679": 9, "8835446575708198": [6, 10, 13], "884": [10, 13], "884991559088098": [6, 10, 13], "885": [10, 13], "886": 10, "888": 10, "9": [0, 6, 10], "9097229915817346": 14, "910": [10, 13], "93575342117766": 13, "936": [10, 13], "937": [4, 10, 13], "9372902801721911": [4, 7, 10, 13], "940": 10, "9400481147756811": 9, "942": 10, "95": [10, 11], "96": 0, "9602": 5, "971": 10, "975": 4, "977": 10, "9781118445112": 4, "981": 10, "990": 10, "9939": 4, "994": [10, 13], "9942": 4, "9942499557748269": [4, 7, 10, 13], "996": 10, "9990721119864874": 14, "A": [0, 4, 6, 7, 9, 11, 13], "And": 9, "But": 11, "By": 9, "FOR": 6, "For": [0, 4, 8, 9, 10, 12], "If": [0, 4, 8, 10], "In": [4, 5, 6, 7, 9, 10, 12, 13, 14], "It": [0, 1, 5, 6, 7, 10, 11, 12], "No": [4, 5, 9], "OF": 6, "On": 5, "One": 6, "Or": 10, "THE": 6, "That": 4, "The": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "Then": [3, 10], "There": [4, 5, 6, 10], "These": 0, "To": [1, 3, 4, 7, 8, 9, 10, 14], "_": [5, 6, 12, 14], "__init__": [0, 2], "aaai": 5, "ab": [5, 9], "about": [5, 6, 11, 14], "abov": [5, 9, 10], "abraitary_misc": [0, 2], "absenc": 0, "absolut": 0, "ac": 5, "academ": 9, "acc": 5, "access": 8, "accordingli": 0, "account": 5, "accur": [1, 8, 12], "accuraci": [0, 5, 7, 11], "achiev": 8, "acra": 9, "across": 0, "actual": [0, 7], "adapt": [5, 9], "add": [0, 9], "addint": 9, "addit": 0, "adjust": [0, 1, 4, 8, 10, 11], "adjusted_p": 9, "adjusted_preval": 0, "adjusted_prob": 0, "adjusted_proba": 0, "adopt": 5, "advantag": [4, 6, 7], "affect": [5, 6, 7, 9], "after": [8, 9, 12], "after_preval": 9, "again": [6, 8], "against": [0, 11], "aim": [5, 8], "aka": [4, 9], "al": [5, 6], "alern": 13, "all": [0, 3, 4, 5, 8, 10, 13, 14], "allow": 0, "alpha": [0, 6, 12], "alpha_v": [0, 2, 4, 6, 9, 10, 12], "alreadi": 10, "also": [4, 5, 6, 7, 9, 10, 12, 13], "altern": [4, 5, 7, 10], "alternativli": 14, "although": 4, "alwai": 5, "american": [4, 7], "an": [0, 4, 5, 6, 7, 9, 10, 13], "analysi": [0, 1], "ani": [0, 6, 7, 12], "append": [4, 6, 12], "appli": [0, 8, 9, 10], "applic": [0, 4, 9, 13], "apply_prevalence_adjust": [0, 2, 9], "approach": 14, "approxim": 12, "ar": [0, 3, 4, 5, 6, 10, 13], "arang": 5, "arbitrari": [0, 7], "area": 0, "argument": [0, 9, 10], "around": 4, "arrai": [0, 4, 6, 12], "arrieta": 5, "artifici": [5, 11], "arxiv": [5, 9], "assess": [0, 1, 4, 6, 8], "associ": [0, 4, 7], "assum": [0, 9, 10, 11], "assumpt": 6, "auc": 0, "austin": 7, "automat": 10, "avail": 0, "averag": [0, 5, 7, 8, 11], "avoid": 0, "b": [4, 9, 12, 13], "b_m": 5, "back": 0, "background": 1, "bad": 11, "bar": [0, 11], "base": [0, 5, 6], "basic": 10, "batch": 1, "bay": 9, "bayesian": 5, "becaus": 5, "becom": [9, 14], "been": [4, 6], "befor": [1, 9], "before_preval": 9, "being": 9, "below": [4, 5, 11], "bernoulli": 11, "beta": [0, 10], "beta_v": [0, 2, 4, 6, 9, 10, 12], "better": 0, "between": [0, 4, 5, 9], "beyond": [4, 6], "big": 4, "biggest": [5, 6], "bin": [0, 1, 4, 6, 7, 8, 10, 11, 12], "bin_count": [0, 5, 6, 7, 11, 14], "bin_counts_0": 11, "bin_counts_1": 11, "bin_edg": [0, 5, 6, 7, 11, 14], "binari": [0, 1, 4, 8, 9, 10, 11, 14], "binomi": 10, "biostatist": 9, "blue": 11, "bool": [0, 9, 11], "boostrap": 10, "bootstrap": [0, 1, 2, 10], "bootstrap_ci": 10, "both": [0, 4, 5, 6, 7, 9], "bound": 0, "breast": 9, "brier": 12, "brocker": 12, "br\u00f6cker": [11, 12], "c": [0, 5, 6, 7, 9, 10, 13, 14], "cal_ici": [0, 2], "cal_ici_cox": [0, 2, 7], "cal_metr": [4, 6, 10, 12, 13, 14], "calcualt": 8, "calcuat": 11, "calcul": [0, 1, 8, 9, 10, 11], "calculate_ece_mc": [0, 2, 5], "calculate_metr": [0, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "calib": 5, "calibbr": 11, "calibr": [0, 1, 6, 9, 10, 11, 12, 13, 14], "calibrationmetr": [0, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "call": [4, 5, 6, 7, 12], "callabl": 0, "calmetr": [4, 5, 6, 7, 9, 12], "calster": 4, "calzon": [3, 11, 13, 14], "can": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "cancer": 9, "cannot": 6, "cao": 1, "capabl": 1, "captur": [4, 7], "care": 14, "carlo": 0, "case": [4, 7, 9, 10, 12], "caus": 5, "caution": 8, "cd": 10, "cdot": [4, 9], "certain": 4, "cessi": 6, "chanc": 4, "chang": [4, 5], "characterist": 0, "chart": 0, "check": [0, 6, 12], "chen": 9, "chi": [0, 6], "chi_squar": 0, "choic": [7, 9, 11], "choos": 4, "ci": 10, "claim": 6, "class": [0, 1, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "class_1_index": [9, 11], "class_1_sampl": [9, 11], "class_to_calcul": [0, 4, 5, 6, 7, 9, 10, 12, 13, 14], "class_to_plot": [0, 5, 6, 7, 11, 14], "classif": [0, 1, 8, 9, 10, 11, 14], "classifi": 9, "clasto": 11, "clean": 0, "cleveland": 7, "cli": 10, "clinic": [4, 7, 12], "clip": [0, 7], "clone": 10, "close": [0, 4, 7], "closer": 4, "coef": [0, 4, 7, 9, 10, 13, 14], "coef_ci": 0, "coeffici": 0, "color": [0, 6, 7, 12], "column": [0, 10, 13], "com": 10, "comma": 10, "command": [1, 3, 13], "common": [4, 7, 14], "commun": 6, "compar": [0, 6, 12], "comparison": 6, "compon": 9, "comprehens": [1, 8], "comput": [0, 4, 5, 7], "con": [1, 8], "conda": 10, "conf": 5, "confer": 5, "confid": [0, 1, 4, 5, 10, 11], "confind": [0, 5, 6, 7, 11, 14], "confindence_0": 11, "confindence_1": 11, "conjunct": 0, "connect": 0, "consid": [8, 14], "const": 4, "constant": 1, "constraint": 4, "contain": [0, 8, 13], "content": 2, "continu": 9, "control": 4, "convent": 5, "convention": 6, "converg": 4, "convert": [0, 14], "cooper": 5, "correct": [0, 7, 9, 11, 12, 14], "correspond": [0, 8, 10], "could": [5, 7, 11], "count": [0, 5, 6], "covari": 4, "coverag": [1, 8], "cox": [0, 1, 8, 9, 10, 13, 14], "cox_func": 7, "cox_ici": 7, "cox_intercept": [4, 7], "cox_intercept_ci": [4, 7], "cox_intercept_lowerci": 4, "cox_intercept_upperci": 4, "cox_p_correct": 7, "cox_regression_analysi": [0, 2, 4, 7], "cox_slop": [4, 7], "cox_slope_ci": [4, 7], "cox_slope_lowerci": 4, "cox_slope_upperci": 4, "creat": [0, 11, 13], "credit": 1, "cross": [9, 12], "csv": [0, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14], "csv_file": [10, 13], "cumul": 7, "current": [3, 4], "curv": [0, 1], "custom": 0, "custom_color": [0, 11], "d": [4, 5, 6, 9, 12], "data": [0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "data_load": [0, 2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "data_path": [0, 2, 4, 5, 6, 7, 11, 12], "dataset": [1, 8, 9, 10, 13, 14], "date": 4, "david": 12, "decil": 6, "decompos": 12, "decomposit": 12, "deep": 5, "default": [0, 6, 10], "defin": [5, 12], "degre": [0, 6], "delta": [0, 7], "demonstr": [5, 9, 11], "demostr": [4, 6, 7], "denomin": 9, "densiti": [0, 6, 12], "dep": 4, "depend": [0, 4, 5, 6, 8, 9, 10], "deriv": [9, 10], "describ": 7, "descript": 8, "detail": [0, 4, 8, 13], "detect": 10, "determin": [0, 6, 8], "develop": [3, 10], "deviat": [5, 7, 8], "df": [0, 4, 6], "df_": [5, 7], "diagnosi": 9, "diagnost": 9, "diagram": [0, 1, 5, 6, 7, 8, 10, 13, 14], "dict": 0, "dictionari": 0, "didsr": 10, "differ": [0, 4, 5, 6, 7, 9, 14], "directli": [5, 7, 9, 10, 12], "directori": [3, 10], "disadvantag": [5, 7], "discrimin": 12, "discuss": [9, 11], "diseas": 9, "displai": 0, "distanc": 0, "distribut": [0, 5, 6, 7, 9, 10, 12], "diverg": [9, 12], "divid": [0, 6], "do": [4, 5, 13], "document": [6, 8], "doe": [6, 12], "doesn": [4, 7, 9, 12], "dof": 10, "doi": [4, 5, 7, 9, 11, 12], "don": 10, "done": [5, 9], "dot": 0, "dpi": 0, "drop": [5, 9, 11], "drop_indic": [9, 11], "dtype": [9, 11], "due": 8, "dure": 13, "dusenberri": 5, "e": [1, 4, 5, 7, 9, 10, 12], "e_": 6, "each": [0, 6, 8, 10, 11, 13, 14], "easi": [5, 6], "easili": 7, "ec": [0, 1, 4, 7, 8, 9, 10, 13, 14], "ece_": 8, "ece_c": 5, "ece_c_classon": 5, "ece_c_top_class": 5, "ece_equal_width": 5, "ece_h": 5, "ece_h_classon": 5, "ece_h_top_class": 5, "ed": 4, "edg": 0, "effect": 5, "eg": 13, "els": [4, 6, 12], "empir": [0, 7], "encod": 0, "end": 10, "entropi": [9, 12], "enumer": 13, "epsilon": 0, "equal": [0, 4, 5, 6, 11, 14], "equat": 9, "equival": [5, 9], "err": 4, "error": [0, 1, 7, 8, 11, 12], "error_bar": [0, 11, 14], "essenti": [1, 7, 8], "estim": [0, 1, 4, 7, 8, 9], "et": [5, 6], "eta": 9, "etc": [1, 13], "evalu": 0, "evenli": 5, "event": [0, 6], "evid": 12, "exact": [4, 11], "examin": [4, 6, 8], "exampl": [0, 4, 7, 10, 11, 12, 13], "example_data": [4, 5, 6, 7, 10, 11, 12, 13, 14], "exceed": 4, "except": [8, 14], "exepect": 1, "exit": 10, "exp": 0, "expand": 9, "expect": [0, 5, 6, 7, 8], "experi": 5, "experienc": 10, "explan": 8, "explicitli": [5, 6], "extens": [1, 5], "extract": 0, "extrem": 12, "f": [0, 4, 7, 9, 12, 13], "f_": 7, "fact": [9, 12], "factor": [0, 9], "fake": [0, 6], "fake_binary_data_gener": [0, 2, 4, 6, 9, 12], "fakedata_gener": [4, 6, 9, 12], "fals": [0, 4, 5, 6, 7, 9, 10, 11, 12], "fan": 1, "featur": [1, 3], "field": [0, 13], "fig": 7, "figur": 0, "file": [0, 10, 13], "find": [0, 1, 9], "find_optimal_preval": [0, 2, 9], "first": [0, 1, 4, 5, 6, 9, 10, 12], "fit": [0, 1, 4, 6], "fix": [0, 4, 5], "fix_intercept": [0, 4], "fix_slop": [0, 4], "flag": [0, 10], "float": 0, "follow": [0, 3, 5, 6, 9, 10, 11, 12, 13], "foral": 9, "forecast": 11, "format": [0, 10, 13], "formula": 7, "fpr": 0, "frac": [4, 5, 6, 7, 9, 12], "fraction": 0, "freedom": [0, 6], "frequenc": [0, 6], "frequent": 0, "from": [0, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "full": [0, 10], "func": 0, "function": [0, 1, 4, 6, 7, 9, 10, 11, 12, 14], "further": [4, 9], "g": [1, 5], "gabriel": [4, 7], "gener": [0, 4, 6, 8, 9, 10, 12], "generate_data": [0, 2, 4, 6, 9, 12], "generate_miscal_data": 10, "generate_subgroup_data": 10, "generate_wellcal_data": 10, "get_ci": [0, 2], "giger": 9, "git": 10, "github": 10, "give": [4, 5, 7], "given": [0, 8, 9, 11, 13], "glaser": 9, "go": 11, "goe": 5, "good": [0, 5, 6, 7, 11], "granular": 0, "graphic": 0, "greater": 6, "greatli": 7, "grid": 7, "group": [0, 5, 6, 7, 11, 13], "gt": [4, 5], "gu": 9, "gui": [1, 10], "gui_cal_metr": 3, "guid": [1, 4], "gujral": 5, "guo": 5, "h": [0, 5, 6, 9, 10, 13, 14], "ha": [4, 10, 12, 13], "had": 6, "half": 9, "hand": 7, "handl": [0, 14], "hat": [4, 5, 7, 8, 9], "hauskrecht": 5, "have": [0, 1, 4, 6, 7, 8, 9, 10, 11, 14], "have_subgroup": [0, 2, 13], "header": [0, 2, 10], "heavili": 5, "help": 10, "helper": 10, "here": [6, 9], "high": 4, "higher": 0, "hist": [6, 12], "histtyp": [6, 12], "hl": [0, 1, 4, 8, 10, 12, 13, 14], "hl_c_p": 6, "hl_c_pvalu": 6, "hl_c_t": 6, "hl_h_p": 6, "hl_h_pvalu": 6, "hl_h_t": 6, "hl_test_valid": 10, "hope": 1, "horsch": 9, "hosmer": [0, 1, 8, 12], "hosmer_lemeshow_test": [0, 2, 6], "hot": 0, "how": [4, 5, 6, 8, 9], "howev": [5, 6, 7, 9, 12], "hsu": 9, "http": [4, 5, 7, 9, 10, 11, 12], "huang": [4, 7], "hyperparamet": [7, 12], "hypothesi": [6, 12], "i": [0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "ibarra": 5, "ici": [0, 1, 4, 8, 9, 10, 13, 14], "idea": 7, "ideal": 6, "ident": 0, "ig": 7, "ignor": 5, "illur": 10, "imag": 10, "imbalanc": 9, "implement": [6, 7], "implicitli": 9, "import": [4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "importlib": 6, "improv": 1, "inch": 0, "includ": [0, 1, 4, 8, 10], "incorrect": 6, "increas": [5, 11], "independ": [0, 9], "index": [0, 1, 8], "indic": [0, 4, 6], "industri": 6, "inform": [0, 11], "informat": [4, 7], "initi": 0, "input": [0, 10, 13], "insid": 10, "inspir": 12, "instabl": 0, "instal": [1, 3], "instead": [0, 6, 10], "int": [0, 9, 11], "int_0": [5, 7], "intecept": 1, "integr": [0, 1, 8], "intellig": [5, 9], "intend": [1, 8], "interact": 4, "intercept": [0, 1, 7, 8, 9, 10, 13, 14], "intercept_ci": 0, "interest": [0, 1, 4, 5, 8, 10, 13, 14], "interestingli": 7, "interfac": [1, 13], "intern": 0, "interpol": 0, "interpret": [5, 6, 7, 14], "interv": [0, 1, 4, 10, 11], "intrins": 9, "intuit": [5, 6], "invers": 0, "is_equal_freq": [0, 5, 6], "iter": 4, "itself": 7, "j": [5, 9, 11, 12, 13], "jamia": [4, 7], "jason": 1, "jerfel": 5, "journal": [4, 7, 12], "just": [5, 6, 13], "k": [5, 7, 9], "kei": [0, 1, 4, 6, 9, 12], "kenett": 4, "keyword": 0, "kira": 9, "kl": [9, 12], "kwarg": 0, "kwok": 1, "kxq045": 9, "l": [4, 5, 6, 7, 9, 11], "label": [0, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "last": 10, "lead": [4, 9, 11], "learn": [1, 5, 8], "left": [6, 9], "legend": [5, 6, 7, 12], "lemesbow": 6, "lemeshow": [0, 1, 8, 12], "len": [5, 9, 11], "level": 0, "li": [4, 7], "librari": 11, "like": [0, 4, 7, 12], "likelihood": [4, 9, 11], "limit": 12, "line": [0, 1, 3, 7, 13], "linear": [0, 4, 7], "linear_misc": [0, 2], "linestyl": [6, 12], "list": [0, 4, 6, 10, 12], "literatur": [5, 6], "liu": 9, "ll": 4, "llr": 4, "load": [0, 4, 5, 6, 7, 11], "loader": 10, "loc": [6, 12], "local": [0, 7, 10], "loess": [0, 1, 8, 9, 10, 13, 14], "loess_ici": 7, "loess_ici2": 7, "log": [0, 4, 9], "logical_and": 4, "logist": [0, 4, 6, 7], "logit": [0, 1, 4], "logit_func": [0, 2, 7], "longford": 4, "look": [7, 11], "loop": 13, "loss": [0, 2, 9], "low": [4, 6], "lower": 0, "lowerci": [4, 7, 9, 10, 13, 14], "lowess": 0, "lowess_fit_p": 7, "lowess_fit_p2": 7, "lowess_fit_p2_correct": 7, "lowess_fit_p_correct": 7, "lowess_regression_analysi": [0, 2, 7, 9], "lr": 9, "lt": 5, "lung": 1, "m": [5, 6, 9, 10, 13], "machado": [4, 7], "macheret": [4, 7], "machin": [1, 5, 8], "mai": 5, "main": 7, "make_roc_curv": [0, 2], "manag": 12, "mani": [6, 7, 12, 13], "mannual": 9, "margin": 9, "marker": [7, 9], "mask": [9, 11], "match": 9, "mathbb": [5, 7, 8], "matplolib": 10, "matplotlib": [0, 5, 6, 7, 10, 12], "max": [5, 6, 12], "max_": 5, "max_m": 5, "max_p": 5, "maximum": [0, 1, 4], "mce": [0, 1, 4, 10, 13, 14], "mce_": 8, "mce_c_classon": 5, "mce_c_top_class": 5, "mce_h_classon": 5, "mce_h_top_class": 5, "mean": [0, 4, 5, 6, 7, 8, 9, 11, 12], "meaning": [1, 8], "measur": [0, 4, 5, 7, 12], "medic": [4, 7, 9], "medicin": 7, "messag": 10, "meteorolog": 12, "method": [0, 4, 5, 6, 7, 9, 11], "metric": [1, 2, 4, 5, 6, 7, 9, 10, 12, 13, 14], "metrics_c": 13, "metz": 9, "mi": [9, 11], "might": [9, 11], "min_": 9, "minim": [0, 9], "miscal_dataload": 7, "miscal_funct": 0, "miscal_scal": [0, 10], "miscalibr": [0, 4, 7, 10, 12], "mislead": 11, "mle": 4, "model": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "moder": [4, 8], "modern": 5, "modifi": 5, "modul": 2, "monoton": 9, "mont": 0, "more": [0, 4, 8, 10, 11, 13], "most": [5, 7, 8, 14], "much": 5, "multi": [0, 1, 8, 10, 14], "multiclass": [0, 1], "multipl": [0, 6], "must": [0, 10], "n": [4, 5, 7, 9, 10, 12, 13], "n_bootstrap": 10, "n_class": 0, "n_m": 6, "n_point": 0, "n_sampl": 0, "naeini": 5, "name": [0, 12], "nan": [0, 4], "nbin": [0, 10], "ndarrai": 0, "necessari": 11, "need": [0, 3, 4, 6, 7, 8, 10], "network": 5, "neural": 5, "new": [0, 4, 5, 9], "nicegui": [3, 10], "nixon": 5, "non": [6, 7, 12], "none": [0, 5, 11], "nonrobust": 4, "normal": 12, "note": 0, "notebook": [4, 8, 9, 10, 14], "notic": [5, 6, 7, 9, 10], "now": 14, "np": [4, 5, 6, 7, 9, 11, 12, 13], "null": [4, 6, 12], "num_bin": [0, 5, 6, 7, 10, 11, 13, 14], "number": [0, 4, 5, 6, 10], "numer": 0, "numpi": [0, 4, 5, 6, 7, 9, 10, 11, 12, 13], "o_": 6, "object": 0, "observ": [0, 4, 5, 6, 8], "obtain": 5, "oct": 4, "ocz228": [4, 7], "odd": 4, "off": 7, "offer": [1, 6], "often": 6, "ohno": [4, 7], "one": [0, 10, 13], "ones": [9, 11], "onli": [0, 1, 4, 5, 8, 10, 11, 13, 14], "onlin": 4, "oper": 0, "opposit": [5, 6], "optim": [0, 9], "optimal_preval": [0, 9], "optimal_prevalence_adjust": [0, 2], "option": [0, 4, 6, 10], "order": [0, 6, 10, 13], "org": [4, 5, 7, 9, 11, 12], "origin": [4, 10], "other": [0, 4, 5, 6, 7, 8, 9, 11, 12, 13], "otherwis": 0, "outcom": [0, 4, 9], "output": [0, 9, 10], "over": [4, 5, 8], "overal": [4, 10, 13], "overconfid": 11, "p": [0, 1, 4, 5, 7, 8, 9, 10, 13, 14], "p_": [4, 5, 14], "p_i": [7, 9, 12], "p_valu": [0, 12], "packag": [1, 2, 4, 10, 11, 12, 13], "pakdaman": 5, "paramet": 0, "parametr": [6, 7, 12], "part": 5, "particular": 5, "particularli": 1, "pass": 0, "path": [0, 10], "patient": 12, "peopl": 7, "pepe": 9, "per": 0, "percentil": 0, "perfect": 4, "perfectli": 7, "perform": [0, 4, 9, 10, 13], "perform_pervalance_adjust": [0, 9], "perhap": 5, "petrick": 9, "pezeshk": 9, "piegorsch": 4, "pip": [3, 10], "pleas": [1, 8], "pleiss": 5, "plot": [0, 5, 7, 8, 10, 11, 13, 14], "plot_bin": 10, "plot_reliability_diagram": [0, 2, 7, 11, 14], "plot_roc_curv": [0, 2], "plote": 7, "plt": [5, 6, 7, 12], "png": 10, "point": 0, "polynomi": 7, "poor": 0, "poorli": 0, "popul": [1, 8, 9, 13], "posit": 0, "posterior": [9, 11], "power": [6, 12], "pp": 4, "practic": 9, "predict": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 14], "predictor": 4, "preform": [1, 13], "prepar": 10, "preprocess": 0, "presenc": 0, "present": 0, "preval": [0, 1, 4, 8, 10, 11, 12], "prevalecn": 10, "prevalence_adjust": 10, "previou": 14, "print": [0, 4, 5, 6, 7, 9, 10, 12, 13], "print_result": [0, 4, 7], "pro": [1, 8], "prob": [0, 2, 4, 5, 6, 7, 10, 11, 12, 13, 14], "proba": 13, "proba_0": [0, 10, 13], "proba_1": [0, 10, 13], "proba_adjust": 9, "proba_class1": 7, "proba_n": [10, 13], "probabilist": [0, 5, 6, 12], "probabiliticst": 0, "probabl": [0, 4, 5, 6, 7, 8, 9, 10, 11, 14], "problem": [0, 5, 6, 8, 9, 10, 11, 14], "proce": 11, "proceed": 5, "process": [1, 10], "produc": 9, "prognost": 4, "program": 10, "project": 1, "proper": 12, "proport": 0, "propos": [5, 12], "prove": [6, 9], "provid": [0, 1, 6, 8, 9, 10, 11, 12, 13], "pseudo": 4, "purpos": 10, "py": [3, 10, 13], "pyplot": [5, 6, 7, 12], "python": [1, 3], "q": 5, "qian": 1, "qj": 12, "quantifi": 7, "quarterli": 12, "quick": 1, "quickli": [5, 6], "quickstart": 13, "r": [4, 6, 7, 12], "radiologi": 9, "random": [4, 6, 9, 11, 12], "random_se": 10, "rang": [4, 5, 6, 12], "range_of_bin": 5, "rate": 0, "ratio": [9, 11], "raw": 0, "re": 9, "read": [1, 13], "reader": 5, "real": 13, "rearrang": 9, "reason": [5, 11], "recalibr": 4, "receiv": 0, "recommend": [0, 5, 6, 8, 12], "red": 11, "refer": [1, 8], "regress": [0, 4, 6, 7], "regular": 14, "reject": 6, "relat": [7, 11], "relationship": 9, "reli": [5, 9], "reliability_0": 11, "reliability_1": 11, "reliability_diagram": [0, 2, 4, 5, 6, 7, 11, 12, 14], "reliabl": [0, 1, 5, 6, 7, 8, 10, 12, 13, 14], "relibail": 10, "reload": 6, "remind": 5, "remov": 0, "removing_nan": [0, 2], "replac": [0, 9, 11], "repositori": 10, "reprens": [1, 8], "repres": [0, 1, 8], "represent": 5, "requir": [6, 7, 10, 12], "resampl": 0, "research": 9, "residu": [0, 4], "resolut": [0, 9, 12], "respect": 9, "rest": [1, 8, 14], "result": [0, 4, 5, 6, 7, 8, 12, 13], "return": [0, 5, 9], "return_fig": 0, "return_numpi": [0, 4, 5, 6, 12], "reveal": 11, "reweight": 0, "right": [6, 9, 12], "risk": 4, "robust": 7, "roc": 0, "roc_auc": 0, "roc_curv": 0, "rough": 5, "round": [6, 12], "row": 0, "royal": 12, "ruggeri": 4, "rule": 12, "run": [0, 1, 10, 13], "sahin": 9, "sai": 9, "same": [0, 5, 7, 9, 10, 13, 14], "sampl": [0, 5, 6, 7, 10, 11, 14], "sample_s": [0, 4, 6, 12], "samuelson": 9, "save": [0, 10], "save_diagram_output": 10, "save_metr": 10, "save_path": 0, "save_plot": 10, "scale": [0, 9], "scatter": 7, "scatterplot": [0, 7], "scheme": [5, 6], "scipi": [0, 10, 11], "scope": [4, 6], "score": [0, 1, 4, 6, 9, 10, 11, 13, 14], "script": [1, 10], "search": 9, "second": [0, 5, 12], "section": [5, 9, 11], "see": [4, 5, 6, 8, 10, 11, 12, 13, 14], "seed": [4, 6, 9, 12], "select": 0, "self": 0, "sens": [8, 11], "sensit": 0, "separ": 10, "seri": [11, 14], "set": [5, 9, 10, 11], "sever": 6, "shape": 0, "shift": [1, 4, 8, 11, 12], "should": [0, 6, 7, 8, 10, 13], "show": [0, 5, 6, 10, 11, 12], "shown": [4, 5, 6, 12], "signific": [0, 6], "sim": [6, 7], "similar": [5, 6], "similarili": 5, "similarli": [4, 5], "simpl": [5, 6, 13], "simpler": 5, "simpli": [3, 5, 10], "simplic": 5, "simul": [0, 6, 13], "simulated_data_subgroup": [10, 13], "simulated_data_subgroup_result": 10, "simulated_misdata": [7, 10], "simulated_misdata_result": 10, "simulated_welldata": [4, 5, 6, 7, 10, 11, 12, 14], "simulated_welldata_diagram_output": 10, "simulated_welldata_result": 10, "simulation_s": [4, 6, 12], "sinc": [4, 6, 9, 11], "situat": 12, "size": [0, 1, 9, 11], "size_c": 6, "size_h": 6, "skip": 7, "slope": [0, 1, 8], "small": 0, "smith": 11, "smooth": [0, 7], "smoothed_proba": 0, "so": 9, "societi": 12, "softmax": [0, 11], "softmax_to_logit": [0, 2, 11], "sole": 8, "some": [4, 5, 6, 12, 13], "sort": [0, 7], "sorted_proba": 0, "sourc": 0, "space": [0, 1, 8], "span": [0, 7], "special": 11, "specif": [8, 9, 10], "specifi": [0, 6, 8, 10, 14], "speigelhalt": 12, "spieegelhalt": 1, "spiegelhalt": [0, 1, 8], "spiegelhalter_z_test": [0, 2, 12], "spiegelhalterz": [0, 10, 12, 13, 14], "spline": 7, "sqrt": 12, "squ": 4, "squar": [0, 6, 12], "standard": [6, 12], "start": 1, "stat08078": 4, "statist": [0, 1, 4, 7, 9, 12], "statistician": 12, "statsmodel": 10, "statsref": 4, "std": 4, "step": [0, 6, 12], "steyerberg": [4, 7], "still": [4, 6, 7, 11, 14], "str": [0, 6, 12], "strongli": 8, "structur": 0, "studi": 6, "subgroup": [0, 1, 2, 10], "subgroup_1": [0, 10, 13], "subgroup_1_group_a": [10, 13], "subgroup_1_group_b": [10, 13], "subgroup_2": [0, 10, 13], "subgroup_class": 13, "subgroup_column": 13, "subgroup_indic": [0, 2, 13], "subgroup_m": [10, 13], "subgroups_class": [0, 2, 13], "subgroups_index": [0, 2, 13], "subject": 4, "submodul": 2, "success": 11, "suffici": [1, 8, 12], "suggest": [0, 6, 8], "suit": 1, "sum": 5, "sum_": [5, 6, 7, 9, 12], "summari": [0, 1], "sun": 5, "support": [0, 3, 6], "t": [0, 4, 5, 6, 7, 9, 10, 12], "take": [0, 8], "tannen": 5, "target": 4, "task": 1, "techniqu": 4, "tell": 4, "tempresult": [4, 6, 12], "term": [5, 7, 9, 12], "test": [0, 1, 8, 10, 11], "test_dataload": 11, "text": [5, 6, 7, 9, 12, 14], "th": [5, 6, 7], "than": [4, 6], "thei": [5, 7], "them": [0, 8, 10], "theorem": 9, "theoret": 1, "theori": 6, "therefor": [5, 6, 7, 8, 9], "thi": [0, 1, 4, 5, 6, 9, 10, 13], "thing": 13, "those": 0, "through": [7, 13], "tian": 9, "time": [4, 9], "titl": [0, 5, 6, 7, 11, 12, 14], "tool": [0, 1, 6, 10, 11], "top": [0, 1, 5, 8, 10, 11, 14], "topclass": [5, 9, 10, 13, 14], "total": [5, 6], "tpr": 0, "tradition": 5, "train": 6, "tran": 5, "transform": [0, 8, 9, 10, 14], "transform_topclass": [0, 2, 14], "transformed_data": 14, "treat": [0, 10], "trend": 4, "trial": [11, 12], "true": [0, 1, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14], "truth": 7, "try": [7, 10], "tune": 12, "tupl": 0, "turn": 10, "tutori": [4, 7, 10], "two": [4, 5, 6, 9, 13], "tygert": 5, "type": [0, 4, 5, 7], "typic": [0, 6], "u": [4, 5, 11], "ubgroup_2": 10, "uitliti": 0, "under": [0, 3, 4, 8, 12], "understand": 6, "uniqu": 0, "up": 5, "upper": [0, 6, 12], "upperci": [4, 7, 9, 10, 13, 14], "us": [0, 1, 3, 4, 5, 6, 8, 9, 11, 13, 14], "usag": 10, "useag": 10, "user": [4, 14], "usual": [4, 6, 9], "util": [2, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14], "v": [1, 4, 5, 8, 10, 14], "v29i1": 5, "valid": [6, 10], "valu": [0, 1, 4, 10, 11, 13, 14], "var": 12, "variabl": 4, "varianc": 12, "variou": [0, 1], "verbos": [10, 13], "veri": [6, 11, 12], "versa": 4, "version": [0, 5], "vi": [2, 7, 11, 14], "vice": 4, "visual": [0, 1, 8, 10, 11], "vline": [6, 12], "vstack": 11, "w": [4, 5, 6, 7, 9], "wa": 12, "waf993": 11, "wai": [4, 5, 6, 7, 13, 14], "want": [5, 10], "warn": 4, "we": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], "weak": 4, "weather": 11, "wed": 4, "weight": [0, 5, 7], "weinberg": 5, "well": [0, 4, 5, 6, 7, 10, 11, 12, 14], "wellcal_dataload": [4, 5, 6, 7, 11, 12], "when": [0, 5, 6, 8, 9, 10, 14], "where": [0, 5, 6, 7, 9, 10, 11, 12, 13], "whether": [0, 4, 6, 8, 9, 10, 12, 13, 14], "which": [0, 4, 5, 7, 8, 9, 10, 11, 12], "while": [4, 5, 6, 7], "who": 12, "whole": 10, "wide": [0, 5, 6], "width": [5, 6, 7], "wilei": 4, "wilson": [0, 11], "window": 7, "within": [0, 9, 13], "without": 0, "word": 9, "work": [1, 6, 8, 10, 14], "workstat": 9, "world": 13, "wrong": 6, "x": [0, 4, 6, 7, 9, 12], "x1": 4, "x_1": 9, "x_2": 9, "x_i": 12, "xlabel": [5, 6, 7, 12], "xu": 5, "y": [0, 4, 5, 6, 7, 8, 9, 12], "y_": 5, "y_i": 9, "y_predict": 0, "y_proba": 0, "y_true": 0, "ylabel": [6, 7, 12], "ylim": 5, "ymax": [6, 12], "ymin": [6, 12], "you": [1, 3, 4, 7, 8, 10, 13, 14], "your": [1, 10], "z": [0, 1, 4, 8, 9], "z_score": [0, 12], "zero": 5, "zhang": 5}, "titles": ["calzone package", "Welcome to the documentation for calzone", "calzone", "Running GUI", "COX calibration analysis", "Exepected Calibration Error(ECE) and Maximum Calibration Error (MCE)", "Hosmer-Lemeshow test (HL test)", "Integrated Calibration Index (ICI)", "Summary and guide for calzone", "Prevalence adjustment", "Quick Start", "Reliability diagram", "Spiegelhalter\u2019s Z-test", "Subgroup analysis", "Multiclass extension"], "titleterms": {"": 12, "adjust": 9, "analysi": [4, 13], "background": [4, 5, 6, 7, 12], "bin": 5, "calcul": [4, 5, 6, 7, 12], "calibr": [4, 5, 7, 8], "calzon": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 12], "class": 9, "command": 10, "con": [4, 5, 6, 7, 12], "constant": 9, "content": [0, 1], "cox": [4, 7], "curv": 7, "diagram": 11, "document": 1, "ec": 5, "error": 5, "estim": 5, "exepect": 5, "extens": 14, "fit": 7, "function": 5, "gui": 3, "guid": 8, "hl": 6, "hosmer": 6, "ici": 7, "index": 7, "instal": 10, "intecept": 4, "integr": 7, "intercept": 4, "interest": 9, "interfac": 10, "lemeshow": 6, "line": 10, "loess": 7, "logit": 9, "maximum": 5, "mce": 5, "metric": [0, 8], "modul": 0, "multiclass": 14, "p": [6, 12], "packag": 0, "preform": 9, "preval": 9, "pro": [4, 5, 6, 7, 12], "python": 10, "quick": 10, "refer": [4, 5, 6, 7, 9, 11, 12], "reliabl": 11, "run": 3, "score": 12, "shift": 9, "size": [4, 5, 6, 12], "slope": 4, "spieegelhalt": 12, "spiegelhalt": 12, "start": 10, "statist": 6, "subgroup": 13, "submodul": 0, "summari": 8, "test": [4, 6, 12], "theoret": [4, 5, 6, 7, 12], "us": [7, 10, 12], "util": 0, "valu": [6, 12], "vi": 0, "visual": 7, "welcom": 1, "z": 12}})
\ No newline at end of file
diff --git a/docs/build/latex/calzone.aux b/docs/build/latex/calzone.aux
index b9bb92e..28f0d4a 100644
--- a/docs/build/latex/calzone.aux
+++ b/docs/build/latex/calzone.aux
@@ -78,8 +78,8 @@
\newlabel{notebooks/hl_test:Calculating-HL-test-statistics-and-p-value-with-calzone}{{5.4}{30}{Calculating HL test statistics and p\sphinxhyphen {}value with calzone}{section.5.4}{}}
\@writefile{toc}{\contentsline {section}{\numberline {5.5}Size of HL test}{31}{section.5.5}\protected@file@percent }
\newlabel{notebooks/hl_test:Size-of-HL-test}{{5.5}{31}{Size of HL test}{section.5.5}{}}
-\@writefile{toc}{\contentsline {section}{\numberline {5.6}Reference}{33}{section.5.6}\protected@file@percent }
-\newlabel{notebooks/hl_test:Reference}{{5.6}{33}{Reference}{section.5.6}{}}
+\@writefile{toc}{\contentsline {section}{\numberline {5.6}Reference}{34}{section.5.6}\protected@file@percent }
+\newlabel{notebooks/hl_test:Reference}{{5.6}{34}{Reference}{section.5.6}{}}
\@writefile{toc}{\contentsline {chapter}{\numberline {6}COX calibration analysis}{35}{chapter.6}\protected@file@percent }
\@writefile{lof}{\addvspace {10\p@ }}
\@writefile{lot}{\addvspace {10\p@ }}
diff --git a/docs/build/latex/calzone.fdb_latexmk b/docs/build/latex/calzone.fdb_latexmk
index b0d2628..61d23aa 100644
--- a/docs/build/latex/calzone.fdb_latexmk
+++ b/docs/build/latex/calzone.fdb_latexmk
@@ -1,10 +1,10 @@
# Fdb version 3
-["makeindex calzone.idx"] 1729800059 "calzone.idx" "calzone.ind" "calzone" 1729800063
- "calzone.idx" 1729800993 7556 580e7a1735725e6c27bdde56ecb685cf "pdflatex"
+["makeindex calzone.idx"] 1729867374 "calzone.idx" "calzone.ind" "calzone" 1729867378
+ "calzone.idx" 1729868310 7556 580e7a1735725e6c27bdde56ecb685cf "pdflatex"
(generated)
"calzone.ilg"
"calzone.ind"
-["pdflatex"] 1729800061 "calzone.tex" "calzone.pdf" "calzone" 1729800063
+["pdflatex"] 1729867376 "calzone.tex" "calzone.pdf" "calzone" 1729867378
"/etc/texmf/web2c/texmf.cnf" 1728063259 475 c0e671620eb5563b2130f56340a5fde8 ""
"/home/kwoklung.fan/.texlive2019/texmf-var/web2c/pdftex/pdflatex.fmt" 1728065444 8258469 f9aaee64b5629d9cdd5c82d0cd0a36eb ""
"/usr/share/texlive/texmf-dist/fonts/enc/dvips/base/8r.enc" 1165713224 4850 80dc9bab7f31fb78a000ccfed0e27cab ""
@@ -174,30 +174,30 @@
"/usr/share/texmf/tex/latex/tex-gyre/tgtermes.sty" 1480098840 2211 af9b7d12507105a58a3e8e926996b827 ""
"/usr/share/texmf/tex/latex/tex-gyre/ts1qtm.fd" 1480098840 1160 de7b1cf70edab73c9f1704df2a9fdbbd ""
"/usr/share/texmf/web2c/texmf.cnf" 1581979058 38841 ce3692aa899bb693b90b87eaa5d4d84e ""
- "calzone.aux" 1729800993 22211 dc2a842f7511e3ec24a7845d9d01e916 "pdflatex"
- "calzone.ind" 1729800990 5374 7c24d43a4a21b13b2d7b0902a9618e79 "makeindex calzone.idx"
- "calzone.out" 1729800993 11017 0b3b85c9fad9148defdef8b454953f20 "pdflatex"
- "calzone.tex" 1729800988 261294 9696b4985a36ade6381572427a5900f8 ""
- "calzone.toc" 1729800993 5237 8190a61a28239a1bb5b1869d1429b3bd "pdflatex"
+ "calzone.aux" 1729868310 22211 a8df3ff9bcaeab7e5f0b34c91e7fe470 "pdflatex"
+ "calzone.ind" 1729868306 5374 7c24d43a4a21b13b2d7b0902a9618e79 "makeindex calzone.idx"
+ "calzone.out" 1729868310 11017 0b3b85c9fad9148defdef8b454953f20 "pdflatex"
+ "calzone.tex" 1729868304 266768 dd59b96c0105007a038c42b1201f1929 ""
+ "calzone.toc" 1729868310 5237 3e608b94f160c2ce9829659ab9a4fa39 "pdflatex"
"mytable.png" 1727877915 716184 0235eb86d9c3d9d8be3cd26a9ca00db9 ""
"nbsphinx.sty" 1723612157 8202 a429e7504022e861d9f81e9a64e9928d ""
- "notebooks_ece_mce_12_1.png" 1729800984 55390 1a16cfda687f702d53b1653f869e18ca ""
- "notebooks_hl_test_13_1.png" 1729800985 21799 b95978db8e70a26596193ce74b909cd8 ""
- "notebooks_hl_test_14_1.png" 1729800985 21843 d147f5f8c65154f77466ca9f2e92235a ""
- "notebooks_ici_8_1.png" 1729800985 43328 2354d7edb62b8a1f369fcba69d425870 ""
- "notebooks_quickstart_16_1.png" 1729800986 39928 4117abd19af3b57bc8e66a51a57c56f8 ""
- "notebooks_quickstart_18_1.png" 1729800986 42921 ee3df6891a29f399f164d5e55f05e6ec ""
- "notebooks_quickstart_20_1.png" 1729800986 42127 7de1ea85f325862a865034006d735614 ""
- "notebooks_quickstart_20_3.png" 1729800986 42854 005a6f616efd03d978c3cb107a73a066 ""
- "notebooks_quickstart_20_5.png" 1729800986 44619 432e67878b412c5e06e1dcc821ed903c ""
- "notebooks_reliability_diagram_3_0.png" 1729800986 40555 7f21493f44d7ea51f3eb7d2e560d4f0b ""
- "notebooks_reliability_diagram_5_0.png" 1729800986 47576 38437d3c4064586dc155be2ef6c8735b ""
- "notebooks_reliability_diagram_8_0.png" 1729800986 40689 0cb4ca8d3c4b37c78e0a871a292c915f ""
- "notebooks_reliability_diagram_9_0.png" 1729800986 60864 f866db6032833e6af5b14aa39a869dde ""
- "notebooks_spiegelhalter_z_9_1.png" 1729800986 22199 c90489bd51b52e777b195f116cce338b ""
- "notebooks_topclass_2_0.png" 1729800987 40555 7f21493f44d7ea51f3eb7d2e560d4f0b ""
+ "notebooks_ece_mce_12_1.png" 1729868301 55390 1a16cfda687f702d53b1653f869e18ca ""
+ "notebooks_hl_test_13_1.png" 1729868301 21799 b95978db8e70a26596193ce74b909cd8 ""
+ "notebooks_hl_test_14_1.png" 1729868301 21843 d147f5f8c65154f77466ca9f2e92235a ""
+ "notebooks_ici_8_1.png" 1729868302 43328 2354d7edb62b8a1f369fcba69d425870 ""
+ "notebooks_quickstart_16_1.png" 1729868302 39928 4117abd19af3b57bc8e66a51a57c56f8 ""
+ "notebooks_quickstart_18_1.png" 1729868302 42921 ee3df6891a29f399f164d5e55f05e6ec ""
+ "notebooks_quickstart_20_1.png" 1729868302 42127 7de1ea85f325862a865034006d735614 ""
+ "notebooks_quickstart_20_3.png" 1729868302 42854 005a6f616efd03d978c3cb107a73a066 ""
+ "notebooks_quickstart_20_5.png" 1729868302 44619 432e67878b412c5e06e1dcc821ed903c ""
+ "notebooks_reliability_diagram_3_0.png" 1729868302 40555 7f21493f44d7ea51f3eb7d2e560d4f0b ""
+ "notebooks_reliability_diagram_5_0.png" 1729868302 47576 38437d3c4064586dc155be2ef6c8735b ""
+ "notebooks_reliability_diagram_8_0.png" 1729868302 40689 0cb4ca8d3c4b37c78e0a871a292c915f ""
+ "notebooks_reliability_diagram_9_0.png" 1729868302 60864 f866db6032833e6af5b14aa39a869dde ""
+ "notebooks_spiegelhalter_z_9_1.png" 1729868303 22199 c90489bd51b52e777b195f116cce338b ""
+ "notebooks_topclass_2_0.png" 1729868303 40555 7f21493f44d7ea51f3eb7d2e560d4f0b ""
"sphinx.sty" 1727458774 50659 6d393be3f369a7862f0b19a359f1ab89 ""
- "sphinxhighlight.sty" 1729800987 7553 83fb52292c17957d9f4aadcb28c57a87 ""
+ "sphinxhighlight.sty" 1729868303 7553 83fb52292c17957d9f4aadcb28c57a87 ""
"sphinxlatexadmonitions.sty" 1727458774 18222 f3bfd316b630ed188fcc20bf320acafe ""
"sphinxlatexcontainers.sty" 1727458774 901 d3a3a1b7b2547f47ade2499350b5c420 ""
"sphinxlatexgraphics.sty" 1727458774 4840 a9578332b6f3b35e198751fb632c9b79 ""
@@ -212,15 +212,15 @@
"sphinxlatexstyletext.sty" 1727458774 6881 543f3cecccc7dccac396b5720cccf443 ""
"sphinxlatextables.sty" 1727458774 57644 2253ce149b29042948a000d2dbf50b50 ""
"sphinxmanual.cls" 1727458774 4241 7b0d7a37df7b5715fb0dbd585c52ecdb ""
- "sphinxmessages.sty" 1729800988 745 3f5fcd6cdd7964ed608767954a8ced6f ""
+ "sphinxmessages.sty" 1729868304 745 3f5fcd6cdd7964ed608767954a8ced6f ""
"sphinxoptionsgeometry.sty" 1727458774 2061 47bb34b8ed8a78823eb0c886abfb9f4d ""
"sphinxoptionshyperref.sty" 1727458774 1094 79beb8b8a3f10784f8cce804e0f9d3aa ""
"sphinxpackageboxes.sty" 1727458774 36106 1be2053eb1cb9b083b3a75e3657bcb24 ""
"sphinxpackagefootnote.sty" 1727458774 15330 2fb656b6ce8cd1f6aba2d1c508fb51e5 ""
(generated)
+ "calzone.pdf"
"calzone.idx"
- "calzone.log"
"calzone.out"
- "calzone.aux"
"calzone.toc"
- "calzone.pdf"
+ "calzone.aux"
+ "calzone.log"
diff --git a/docs/build/latex/calzone.log b/docs/build/latex/calzone.log
index 085c9f1..120a963 100644
--- a/docs/build/latex/calzone.log
+++ b/docs/build/latex/calzone.log
@@ -1,4 +1,4 @@
-This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2024.10.4) 24 OCT 2024 16:01
+This is pdfTeX, Version 3.14159265-2.6-1.40.20 (TeX Live 2019/Debian) (preloaded format=pdflatex 2024.10.4) 25 OCT 2024 10:42
entering extended mode
restricted \write18 enabled.
%&-line parsing enabled.
@@ -893,67 +893,67 @@ LaTeX Font Info: Font shape `T1/txtt/b/n' in size <10> not available
(Font) Font shape `T1/txtt/bx/n' tried instead on input line 237.
[4]
LaTeX Font Info: Trying to load font information for TS1+txtt on input line
-329.
+334.
(/usr/share/texlive/texmf-dist/tex/latex/txfonts/ts1txtt.fd
File: ts1txtt.fd 2000/12/15 v3.1
)
-Underfull \vbox (badness 2343) detected at line 383
+Underfull \vbox (badness 2343) detected at line 389
[]
[5]
File: notebooks_quickstart_16_1.png Graphic file (type png)