-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTTT_symmetries.py
379 lines (324 loc) · 9.31 KB
/
TTT_symmetries.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
print("Find all unique board positions of TicTacToe, quotient symmetry\n")
# TO-DO:
# * why non-equivalent (s,a) pairs are mixed up
def show_vec(board):
for i in [0, 3, 6]:
for j in range(3):
x = board[i + j]
if x == -1:
c = 'X'
elif x == 1:
c = 'O'
else:
c = '-'
print(c, end='')
print(end='\n')
def show_board(board):
for i in [0, 3, 6]:
for j in range(3):
x = board[i + j]
if x == -1:
c = '❌'
elif x == 1:
c = '⭕'
else:
c = ' '
print(c, end='')
print(end='\n')
# Convert board vector to base-3 number
def base3(board):
s = ((((((( \
board[0] * 3 + 3 + \
board[1]) * 3 + 3 + \
board[2]) * 3 + 3 + \
board[3]) * 3 + 3 + \
board[4]) * 3 + 3 + \
board[5]) * 3 + 3 + \
board[6]) * 3 + 3 + \
board[7]) * 3 + 3 + \
board[8]+1
return s
# Convert base-3 number to board vector
def base3toVec(s):
board = base3toBoard(s)
board = (9 - len(board)) * [-1] + board
return board
def base3toBoard(s):
if s <= 2:
return [s - 1]
else:
return base3toBoard(s // 3) + [(s % 3) - 1]
# Check only for the given player.
# Return reward w.r.t. the specific player.
def game_over(board, player):
# check horizontal
for i in [0, 3, 6]: # for each row
if board[i + 0] == player and \
board[i + 1] == player and \
board[i + 2] == player:
return 20
# check vertical
for j in [0, 1, 2]: # for each column
if board[3 * 0 + j] == player and \
board[3 * 1 + j] == player and \
board[3 * 2 + j] == player:
return 20
# check diagonal
if board[0 + 0] == player and \
board[3 * 1 + 1] == player and \
board[3 * 2 + 2] == player:
return 20
# check backward diagonal
if board[3 * 0 + 2] == player and \
board[3 * 1 + 1] == player and \
board[3 * 2 + 0] == player:
return 20
# return None if game still open
for i in [0, 3, 6]:
for j in [0, 1, 2]:
if board[i + j] == 0:
return None
# For one version of gym TicTacToe, draw = 10 regardless of player;
# Another way is to assign draw = 0.
return 10
# This function is player-independent
def possible_moves(board):
moves = []
for i in range(9):
if board[i] == 0:
moves.append(i)
return moves
# Symmetry of a square, the dihedral group Dih_4
# https://en.m.wikipedia.org/wiki/Examples_of_groups#The_symmetry_group_of_a_square_-_dihedral_group_of_order_8
group = {
'e': [0,1,2,3,4,5,6,7,8],
'a': [6,3,0,7,4,1,8,5,2],
'a2': [8,7,6,5,4,3,2,1,0],
'a3': [2,5,8,1,4,7,0,3,6],
'b': [2,1,0,5,4,3,8,7,6],
'ab': [0,3,6,1,4,7,2,5,8],
'a2b': [6,7,8,3,4,5,0,1,2],
'a3b': [8,5,2,7,4,1,6,3,0]
}
# Apply a group action to a board
def applySym(board, sym):
newBoard = []
for j in range(0,9):
# print(group[sym][j])
newBoard += [board[group[sym][j]]]
return newBoard
ILLEGAL = 19682
WIN = 4918
LOSE = 5029
DRAW = 19682
eqClasses = [set([9841]), set([ILLEGAL]), set([WIN]), set([LOSE]), set([DRAW])]
# Add all other equivalent members to a class
def addEqvs(board, cls):
for sym in ['a','a2','a3','b','ab','a2b','a3b']:
board2 = applySym(board, sym)
# convert to base-3 number
s2 = base3(board2)
cls.add(s2)
steps = 0 # number of states traversed, with repeats
end_steps = 0 # number of end states reached, with repeats
reachables = set()
ends = set()
# **** Find all reachable states of TicTacToe
def play_all(board, player):
global reachables, ends
global steps, end_steps
reachables.add(base3(board))
steps += 1
# **** Find all possible next moves for player 'X' or 'O'
moves = possible_moves(board)
# For each possible board, find its base-3 number
# check for duplicates in equivalence class list
# Then find all its equivalent forms, add new equivalence class
for m in moves:
new_board = board.copy()
new_board[m] = player
# If this an ending move? If yes, terminate recursion
r = game_over(new_board, player)
if r is not None: # game-over'd
ends.add(base3(new_board))
end_steps += 1
continue # next move, no need to recurse
play_all(new_board, -player) # recurse with next player
print("Without symmetry...")
play_all([0]*9, -1)
print("Total # of non-end moves played =", steps)
print("Total # of games played =", end_steps)
count = len(reachables)
count_end = len(ends)
print("Total # of non-end states =", count)
print("Total # of end states =", count_end)
print("Total # of reachable states =", count + count_end)
ans = input("\nWrite all reachable states to reachables.py? [y/N]")
if ans == 'Y' or ans == 'y':
f1 = open("reachables.py", 'w')
f1.write("reachables =")
f1.write(str(reachables))
f1.close()
exit(0)
def allSyms(states):
eqClasses = []
for s in states:
# check if duplicated
duplicate = False
for cls in eqClasses:
if s in cls:
duplicate = True
if duplicate:
continue # next state
# find all s's symmetries and add to new class
cls = set()
cls.add(s)
board = base3toVec(s)
addEqvs(board, cls)
eqClasses += [cls]
return eqClasses
print("\nWith symmetry...")
eqStates = allSyms(reachables)
num_states = len(eqStates)
print("Total # of non-end states =", num_states)
eqEndStates = allSyms(ends)
num_ends = len(eqEndStates)
print("Total # of end states =", num_ends)
print("Total # of reachable states =", num_states + num_ends)
reachablePairs = [(s,a) for s in reachables for a in [0,1,2,3,4,5,6,7,8]]
print("\nTotal # of (s,a) pairs (without symmetry) =", len(reachablePairs))
# **** Find all equivalence classes of (s,a) pairs
# code is same as the previous except actions are also transformed
def allSymPairs(pairs):
eqClasses = []
for (s,a) in pairs:
# check if duplicated
duplicate = False
for cls in eqClasses:
if (s,a) in cls:
duplicate = True
if duplicate:
continue # next state
# find all s's symmetries and add to new class
cls = set()
cls.add((s,a))
board = base3toVec(s)
for sym in ['a','a2','a3','b','ab','a2b','a3b']:
board2 = applySym(board, sym)
s2 = base3(board2) # convert to base-3 number
a2 = group[sym].index(a) # apply transform to action as well
cls.add((s2,a2))
eqClasses += [cls]
return eqClasses
eqPairs = allSymPairs(reachablePairs)
print("Total # of (s,a) pairs (with symmetry) =", len(eqPairs))
# New method is to build dictionary (s,a) --> class number
Qdict = {}
for i, cls in enumerate(eqPairs):
for (q,a) in cls:
Qdict[(q,a)] = i
print("Qdict =", Qdict)
exit(0)
ans = input("\nWrite output to eqPairs.py? [y/N]")
if ans == 'Y' or ans == 'y':
f1 = open("eqPairs.py", 'w')
f1.write("eqPairs =")
f1.write(str(eqPairs))
f1.close()
exit(0)
count2 = 0
count_end2 = 0
# **** Find all symmetries of TTT, by recursively playing game
def allSyms2(board, player):
global eqClasses
global count2, count_end2
# **** Find all possible next moves for player 'X' or 'O'
moves = possible_moves(board)
# For each possible board, find its base-3 number
# check for duplicates in equivalence class list
# Then find all its equivalent forms, add new equivalence class
for m in moves:
new_board = board.copy()
new_board[m] = player
s = base3(new_board)
count2 += 1
duplicate = False
for c in eqClasses:
if s in c:
duplicate = True
if duplicate:
continue # next move
# If this an ending move? If yes, terminate recursion
r = game_over(new_board, player)
if r is not None: # game-over'd
count_end2 += 1
# add to WIN or LOSE classes, respectively
if r == 10: # DRAW
eqClasses[4].add(s)
addEqvs(new_board, eqClasses[4])
elif player == -1: # WIN
eqClasses[2].add(s)
addEqvs(new_board, eqClasses[2])
else: # LOSE
eqClasses[3].add(s)
addEqvs(new_board, eqClasses[3])
continue # next move, no need to recurse
# add new class of s and its equivalents
cls = set()
cls.add(s)
addEqvs(new_board, cls)
eqClasses += [cls]
allSyms(new_board, -player) # recurse with next player
print("\nWith symmetry...")
allSyms([0] * 9, -1)
print("Total number of reachable states (including end states) =", count2)
print("Total number of end states =", count_end2)
print("Restricted total classes =", len(eqClasses))
ans = input("\nWrite output to eqClasses.py? [y/N]")
if ans == 'Y' or ans == 'y':
f1 = open("eqClasses.py", 'w')
f1.write("eqClasses =")
f1.write(str(eqClasses))
f1.close()
# *************** This is an older incorrect version ******************
# Enumerates all board positions = 3^9 = 19683
# This includes many impossible boards, such as all X's.
# But this part is useful for checking correctness of functions.
def allSyms_incorrect():
eqClasses = []
for s in range(0,19683):
duplicate = False
for c in eqClasses:
if s in c:
duplicate = True
if duplicate:
continue
# convert base-3 number to board vector
board = base3toVec(s)
# print(s - base3(board), s, board)
# print(board)
# show_board(board)
print(s, end='\t')
# for each board position, find all its symmetric positions
# put into list of equivalence classes
cls = set()
for sym in ['a','a2','a3','b','ab','a2b','a3b']:
board2 = applySym(board, sym)
# convert to base-3 number
s2 = base3(board2)
cls.add(s2)
# print('-------------')
# show_board(board2)
"""duplicate = False # This seems never true
for c in eqClasses:
for c2 in cls:
if c2 in c:
duplicate = True
if duplicate:
print("*********************")
continue"""
cls.add(s)
eqClasses += [cls]
# print('=====================================\n')
print(eqClasses)
print("Total classes = ", len(eqClasses))