generated from annotation-ai/python-project-template
-
Notifications
You must be signed in to change notification settings - Fork 25
/
Copy pathapp.py
231 lines (202 loc) · 6.54 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import urllib
from functools import lru_cache
from random import randint
from typing import Any, Callable, Dict, List, Tuple
import clip
import cv2
import gradio as gr
import numpy as np
import PIL
import torch
from segment_anything import SamAutomaticMaskGenerator, sam_model_registry
CHECKPOINT_PATH = os.path.join(os.path.expanduser("~"), ".cache", "SAM")
CHECKPOINT_NAME = "sam_vit_h_4b8939.pth"
CHECKPOINT_URL = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth"
MODEL_TYPE = "default"
MAX_WIDTH = MAX_HEIGHT = 1024
TOP_K_OBJ = 100
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
@lru_cache
def load_mask_generator() -> SamAutomaticMaskGenerator:
if not os.path.exists(CHECKPOINT_PATH):
os.makedirs(CHECKPOINT_PATH)
checkpoint = os.path.join(CHECKPOINT_PATH, CHECKPOINT_NAME)
if not os.path.exists(checkpoint):
urllib.request.urlretrieve(CHECKPOINT_URL, checkpoint)
sam = sam_model_registry[MODEL_TYPE](checkpoint=checkpoint).to(device)
mask_generator = SamAutomaticMaskGenerator(sam)
return mask_generator
@lru_cache
def load_clip(
name: str = "ViT-B/32",
) -> Tuple[torch.nn.Module, Callable[[PIL.Image.Image], torch.Tensor]]:
model, preprocess = clip.load(name, device=device)
return model.to(device), preprocess
def adjust_image_size(image: np.ndarray) -> np.ndarray:
height, width = image.shape[:2]
if height > width:
if height > MAX_HEIGHT:
height, width = MAX_HEIGHT, int(MAX_HEIGHT / height * width)
else:
if width > MAX_WIDTH:
height, width = int(MAX_WIDTH / width * height), MAX_WIDTH
image = cv2.resize(image, (width, height))
return image
@torch.no_grad()
def get_score(crop: PIL.Image.Image, texts: List[str]) -> torch.Tensor:
model, preprocess = load_clip()
preprocessed = preprocess(crop).unsqueeze(0).to(device)
tokens = clip.tokenize(texts).to(device)
logits_per_image, _ = model(preprocessed, tokens)
similarity = logits_per_image.softmax(-1).cpu()
return similarity[0, 0]
def crop_image(image: np.ndarray, mask: Dict[str, Any]) -> PIL.Image.Image:
x, y, w, h = mask["bbox"]
masked = image * np.expand_dims(mask["segmentation"], -1)
crop = masked[y : y + h, x : x + w]
if h > w:
top, bottom, left, right = 0, 0, (h - w) // 2, (h - w) // 2
else:
top, bottom, left, right = (w - h) // 2, (w - h) // 2, 0, 0
# padding
crop = cv2.copyMakeBorder(
crop,
top,
bottom,
left,
right,
cv2.BORDER_CONSTANT,
value=(0, 0, 0),
)
crop = PIL.Image.fromarray(crop)
return crop
def get_texts(query: str) -> List[str]:
return [f"a picture of {query}", "a picture of background"]
def filter_masks(
image: np.ndarray,
masks: List[Dict[str, Any]],
predicted_iou_threshold: float,
stability_score_threshold: float,
query: str,
clip_threshold: float,
) -> List[Dict[str, Any]]:
filtered_masks: List[Dict[str, Any]] = []
for mask in sorted(masks, key=lambda mask: mask["area"])[-TOP_K_OBJ:]:
if (
mask["predicted_iou"] < predicted_iou_threshold
or mask["stability_score"] < stability_score_threshold
or image.shape[:2] != mask["segmentation"].shape[:2]
or query
and get_score(crop_image(image, mask), get_texts(query)) < clip_threshold
):
continue
filtered_masks.append(mask)
return filtered_masks
def draw_masks(
image: np.ndarray, masks: List[np.ndarray], alpha: float = 0.7
) -> np.ndarray:
for mask in masks:
color = [randint(127, 255) for _ in range(3)]
# draw mask overlay
colored_mask = np.expand_dims(mask["segmentation"], 0).repeat(3, axis=0)
colored_mask = np.moveaxis(colored_mask, 0, -1)
masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=color)
image_overlay = masked.filled()
image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0)
# draw contour
contours, _ = cv2.findContours(
np.uint8(mask["segmentation"]), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
cv2.drawContours(image, contours, -1, (0, 0, 255), 2)
return image
def segment(
predicted_iou_threshold: float,
stability_score_threshold: float,
clip_threshold: float,
image_path: str,
query: str,
) -> PIL.ImageFile.ImageFile:
mask_generator = load_mask_generator()
image = cv2.imread(image_path, cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# reduce the size to save gpu memory
image = adjust_image_size(image)
masks = mask_generator.generate(image)
masks = filter_masks(
image,
masks,
predicted_iou_threshold,
stability_score_threshold,
query,
clip_threshold,
)
image = draw_masks(image, masks)
image = PIL.Image.fromarray(image)
return image
demo = gr.Interface(
fn=segment,
inputs=[
gr.Slider(0, 1, value=0.9, label="predicted_iou_threshold"),
gr.Slider(0, 1, value=0.8, label="stability_score_threshold"),
gr.Slider(0, 1, value=0.85, label="clip_threshold"),
gr.Image(type="filepath"),
"text",
],
outputs="image",
allow_flagging="never",
title="Segment Anything with CLIP",
examples=[
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/dog.jpg"),
"dog",
],
[
0.9,
0.8,
0.75,
os.path.join(os.path.dirname(__file__), "examples/city.jpg"),
"building",
],
[
0.9,
0.8,
0.998,
os.path.join(os.path.dirname(__file__), "examples/food.jpg"),
"strawberry",
],
[
0.9,
0.8,
0.75,
os.path.join(os.path.dirname(__file__), "examples/horse.jpg"),
"horse",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/bears.jpg"),
"bear",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/cats.jpg"),
"cat",
],
[
0.9,
0.8,
0.99,
os.path.join(os.path.dirname(__file__), "examples/fish.jpg"),
"fish",
],
],
)
if __name__ == "__main__":
demo.launch()