-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathsupervised.py
188 lines (153 loc) · 6.15 KB
/
supervised.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import argparse
import torch
import torch.nn.functional as F
import torch_geometric.transforms as T
from torch_geometric.nn import GCNConv, SAGEConv
from graphmae.utils import build_args
from graphmae.data_util import unify_dataset_loader
from ogb.nodeproppred import Evaluator
from torch_geometric.utils import mask_to_index
from torch_geometric import seed_everything
from task_constructor import LabelPerClassSplit
def set_few_shot_train_mask(data, num_train_per_class = 3):
splitter = LabelPerClassSplit(num_train_per_class)
total_num = data.y.size(0)
train_mask, _, _ = splitter(data, total_num)
return train_mask
class GCN(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(GCN, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(GCNConv(in_channels, hidden_channels, cached=True))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(
GCNConv(hidden_channels, hidden_channels, cached=True))
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
self.convs.append(GCNConv(hidden_channels, out_channels, cached=True))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, x, adj_t):
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x.log_softmax(dim=-1)
class SAGE(torch.nn.Module):
def __init__(self, in_channels, hidden_channels, out_channels, num_layers,
dropout):
super(SAGE, self).__init__()
self.convs = torch.nn.ModuleList()
self.convs.append(SAGEConv(in_channels, hidden_channels))
self.bns = torch.nn.ModuleList()
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
for _ in range(num_layers - 2):
self.convs.append(SAGEConv(hidden_channels, hidden_channels))
self.bns.append(torch.nn.BatchNorm1d(hidden_channels))
self.convs.append(SAGEConv(hidden_channels, out_channels))
self.dropout = dropout
def reset_parameters(self):
for conv in self.convs:
conv.reset_parameters()
for bn in self.bns:
bn.reset_parameters()
def forward(self, x, adj_t):
for i, conv in enumerate(self.convs[:-1]):
x = conv(x, adj_t)
x = self.bns[i](x)
x = F.relu(x)
x = F.dropout(x, p=self.dropout, training=self.training)
x = self.convs[-1](x, adj_t)
return x.log_softmax(dim=-1)
def train(model, data, train_idx, optimizer):
model.train()
optimizer.zero_grad()
out = model(data.x, data.adj_t)[train_idx]
loss = F.nll_loss(out, data.y.squeeze(1)[train_idx])
loss.backward()
optimizer.step()
return loss.item()
@torch.no_grad()
def test(model, data, split_idx, evaluator):
model.eval()
out = model(data.x, data.adj_t)
y_pred = out.argmax(dim=-1, keepdim=True)
train_acc = evaluator.eval({
'y_true': data.y[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['acc']
valid_acc = evaluator.eval({
'y_true': data.y[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['acc']
test_acc = evaluator.eval({
'y_true': data.y[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['acc']
return train_acc, valid_acc, test_acc
def mask2splitidx(masks):
split_idx = {}
split_idx['train'] = mask_to_index(masks[0])
split_idx['valid'] = mask_to_index(masks[1])
split_idx['test'] = mask_to_index(masks[2])
return split_idx
def main():
## this file is mainly designed for single-task baseline
args = build_args()
device = f'cuda:{args.device}' if torch.cuda.is_available() else 'cpu'
device = torch.device(device)
dataset = unify_dataset_loader([args.dataset], args)[0]
data = dataset[0]
data = T.ToSparseTensor()(data)
data.adj_t = data.adj_t.to_symmetric()
data = data.to(device)
data.y = data.y.view(-1, 1)
if args.fewshot:
dataset.train_mask = set_few_shot_train_mask(dataset.data, 3)
split_idx = mask2splitidx([dataset.train_mask, dataset.val_mask, dataset.test_mask])
train_idx = split_idx['train'].to(device)
num_features = data.x.shape[1]
num_classes = data.y.max().item() + 1
if args.encoder == 'sage':
model = SAGE(num_features, args.num_hidden,
num_classes, args.num_layers,
args.in_drop).to(device)
else:
model = GCN(num_features, args.num_hidden,
num_classes, args.num_layers,
args.in_drop).to(device)
evaluator = Evaluator(name='ogbn-arxiv')
# logger = Logger(args.runs, args)
best_val = 0
best_test = 0
seed_everything(0)
for run in range(1):
model.reset_parameters()
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)
for epoch in range(1, 1 + args.max_epoch):
loss = train(model, data, train_idx, optimizer)
result = test(model, data, split_idx, evaluator)
# logger.add_result(run, result)
train_acc, valid_acc, test_acc = result
print(f'Run: {run + 1:02d}, '
f'Epoch: {epoch:02d}, '
f'Loss: {loss:.4f}, '
f'Train: {100 * train_acc:.2f}%, '
f'Valid: {100 * valid_acc:.2f}% '
f'Test: {100 * test_acc:.2f}%')
if valid_acc > best_val:
best_val = valid_acc
best_test = test_acc
print("Best Valid: ", best_val, "Best Test: ", best_test)
#logger.print_statistics(run)
# logger.print_statistics()
if __name__ == "__main__":
main()