-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathicl.py
50 lines (42 loc) · 1.9 KB
/
icl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import os
import sys
from gtext.utils.basics import time_logger, wandb_finish
from tqdm import tqdm
from gtext.utils.project.exp import init_experiment
import logging
import hydra
logging.getLogger("transformers").setLevel(logging.WARNING)
logging.getLogger("transformers.tokenization_utils").setLevel(logging.ERROR)
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from gtext.graph_text.icl import LLMForInContextLearning
from gtext.utils.data.textual_graph import TextualGraph
from gtext.graph_text.graph_instruction_dataset import GraphInstructionDataset
from torch.utils.data import Subset
import numpy as np
from gtext.utils.basics import init_env_variables
@time_logger()
@hydra.main(config_path=f"./conf", config_name="main", version_base=None)
def run_inference(cfg):
cfg, logger = init_experiment(cfg)
data = TextualGraph(cfg=cfg)
full_dataset = GraphInstructionDataset(data, cfg, cfg.mode)
eval_splits = cfg.get('eval_sets', ['val', 'test'])
results = {}
for split in eval_splits:
data.text["pred_choice"] = np.nan
dataset = Subset(full_dataset, data.split_ids[split][:cfg.data.max_test_samples])
# import ipdb; ipdb.set_trace()
llm = hydra.utils.instantiate(cfg.llm)
model = LLMForInContextLearning(cfg, data, llm, logger, **cfg.model)
for i, item in tqdm(enumerate(dataset), "Evaluating..."):
node_id, graph_tree_list, in_text, out_text, demo, question, _ = item
is_evaluate = i % cfg.eval_freq == 0 and i != 0
model(node_id, in_text, demo, question, log_sample=is_evaluate)
if is_evaluate:
model.eval_and_save(step=i, sample_node_id=node_id, split=split)
results.update(model.eval_and_save(step=i, sample_node_id=node_id, split=split))
logger.info("Evaluation finished")
wandb_finish(results)
if __name__ == "__main__":
init_env_variables(cfg=None)
run_inference()