-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
422 lines (349 loc) · 21.3 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import warnings
with warnings.catch_warnings():
warnings.filterwarnings('ignore', category=RuntimeWarning)
warnings.filterwarnings('ignore', category=FutureWarning)
import tensorflow as tf
from tensorflow.core.protobuf import config_pb2
import os
import numpy as np
from PIL import Image
from tqdm import trange
import networks
import ops
import utils
tf.compat.v1.logging.set_verbosity(tf.compat.v1.logging.ERROR)
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
def stylize(content_img,
style_img,
# Brushstroke optimizer params
resolution=512,
num_strokes=5000,
num_steps=100,
S=10,
K=20,
canvas_color='gray',
width_scale=0.1,
length_scale=1.1,
content_weight=1.0,
style_weight=3.0,
tv_weight=0.008,
curviture_weight=4.0,
# Pixel optimizer params
pixel_resolution=1024,
num_steps_pixel=2000
):
stroke_optim = BrushstrokeOptimizer(content_img,
style_img,
resolution=resolution,
num_strokes=num_strokes,
num_steps=num_steps,
S=S,
K=K,
canvas_color=canvas_color,
width_scale=width_scale,
length_scale=length_scale,
content_weight=content_weight,
style_weight=style_weight,
tv_weight=tv_weight,
curviture_weight=curviture_weight)
print('Stroke optimization:')
canvas = stroke_optim.optimize()
pixel_optim = PixelOptimizer(canvas,
style_img,
resolution=pixel_resolution,
num_steps=num_steps_pixel,
content_weight=1.0,
style_weight=10000.0)
print('Pixel optimization:')
canvas = pixel_optim.optimize()
return canvas
class BrushstrokeOptimizer:
def __init__(self,
content_img, # Content image (PIL.Image).
style_img, # Style image (PIL.Image).
draw_curve_position_path = None, # Set of points that represent the drawn curves, denoted as P_i in Sec. B of the paper (str).
draw_curve_vector_path = None, # Set of tangent vectors for the points of the drawn curves, denoted as v_i in Sec. B of the paper (str).
draw_strength = 100, # Strength of the influence of the drawn curves, denoted L in Sec. B of the paper (int).
resolution = 512, # Resolution of the canvas (int).
num_strokes = 5000, # Number of brushstrokes (int).
num_steps = 100, # Number of optimization steps (int).
S = 10, # Number of points to sample on each curve, see Sec. 4.2.1 of the paper (int).
K = 20, # Number of brushstrokes to consider for each pixel, see Sec. C.2 of the paper (int).
canvas_color = 'gray', # Color of the canvas (str).
width_scale = 0.1, # Scale parameter for the brushstroke width (float).
length_scale = 1.1, # Scale parameter for the brushstroke length (float).
content_weight = 1.0, # Weight for the content loss (float).
style_weight = 3.0, # Weight for the style loss (float).
tv_weight = 0.008, # Weight for the total variation loss (float).
draw_weight = 100.0, # Weight for the drawing projection loss (float)
curviture_weight = 4.0, # Weight for the curviture loss (float).
streamlit_pbar = None, # Progressbar for streamlit app (obj).
dtype = 'float32' # Data type (str).
):
self.draw_strength = draw_strength
self.draw_weight = draw_weight
self.resolution = resolution
self.num_strokes = num_strokes
self.num_steps = num_steps
self.S = S
self.K = K
self.canvas_color = canvas_color
self.width_scale = width_scale
self.length_scale = length_scale
self.content_weight = content_weight
self.style_weight = style_weight
self.tv_weight = tv_weight
self.curviture_weight = curviture_weight
self.streamlit_pbar = streamlit_pbar
self.dtype = dtype
# Set canvas size (set smaller side of content image to 'resolution' and scale other side accordingly)
W, H = content_img.size
if H < W:
new_H = resolution
new_W = int((W / H) * new_H)
else:
new_W = resolution
new_H = int((H / W) * new_W)
self.canvas_height = new_H
self.canvas_width = new_W
content_img = content_img.resize((self.canvas_width, self.canvas_height))
style_img = style_img.resize((self.canvas_width, self.canvas_height))
content_img = np.array(content_img).astype(self.dtype)
style_img = np.array(style_img).astype(self.dtype)
content_img /= 255.0
style_img /= 255.0
self.content_img_np = content_img
self.style_img_np = style_img
if draw_curve_position_path is not None and draw_curve_vector_path is not None:
self.draw_curve_position_np = np.load(draw_curve_position_path)
self.draw_curve_vector_np = np.load(draw_curve_vector_path)
self.draw_curve_position_np[..., 0] *= self.canvas_width
self.draw_curve_position_np[..., 1] *= self.canvas_height
ckpt_path = utils.download_weights(url='https://www.dropbox.com/s/hv7b4eajrj7isyq/vgg_weights.pickle?dl=1',
name='vgg_weights.pickle')
self.vgg = networks.VGG(ckpt_path=ckpt_path)
def optimize(self):
self._initialize()
self._render()
self._losses()
self._optimizer()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
steps = trange(self.num_steps, desc='', leave=True)
for step in steps:
I_, loss_dict_, params_dict_, _ = \
sess.run(fetches=[self.I,
self.loss_dict,
self.params_dict,
self.optim_step_with_constraints],
options=config_pb2.RunOptions(report_tensor_allocations_upon_oom=True)
)
steps.set_description(f'content_loss: {loss_dict_["content"]:.6f}, style_loss: {loss_dict_["style"]:.6f}')
#s = ''
#for key in loss_dict_:
# loss = loss_dict_[key]
# s += key + f': {loss_dict_[key]:.4f}, '
#steps.set_description(s[:-2])
#print(s)
steps.refresh()
if self.streamlit_pbar is not None: self.streamlit_pbar.update(1)
return Image.fromarray(np.array(np.clip(I_, 0, 1) * 255, dtype=np.uint8))
def _initialize(self):
location, s, e, c, width, color = utils.initialize_brushstrokes(self.content_img_np,
self.num_strokes,
self.canvas_height,
self.canvas_width,
self.length_scale,
self.width_scale)
self.curve_s = tf.Variable(name='curve_s', initial_value=s, dtype=self.dtype)
self.curve_e = tf.Variable(name='curve_e', initial_value=e, dtype=self.dtype)
self.curve_c = tf.Variable(name='curve_c', initial_value=c, dtype=self.dtype)
self.color = tf.Variable(name='color', initial_value=color, dtype=self.dtype)
self.location = tf.Variable(name='location', initial_value=location, dtype=self.dtype)
self.width = tf.Variable(name='width', initial_value=width, dtype=self.dtype)
self.content_img = tf.constant(name='content_img', value=self.content_img_np, dtype=self.dtype)
self.style_img = tf.constant(name='style_img', value=self.style_img_np, dtype=self.dtype)
if hasattr(self, 'draw_curve_position_np') and hasattr(self, 'draw_curve_vector_np'):
self.draw_curve_position = tf.constant(name='draw_curve_position', value=self.draw_curve_position_np, dtype=self.dtype)
self.draw_curve_vector = tf.constant(name='draw_curve_vector', value=self.draw_curve_vector_np, dtype=self.dtype)
self.params_dict = {'location': self.location,
'curve_s': self.curve_s,
'curve_e': self.curve_e,
'curve_c': self.curve_c,
'width': self.width,
'color': self.color}
def _render(self):
curve_points = ops.sample_quadratic_bezier_curve(s=self.curve_s + self.location,
e=self.curve_e + self.location,
c=self.curve_c + self.location,
num_points=self.S,
dtype=self.dtype)
self.I = ops.renderer(curve_points,
self.location,
self.color,
self.width,
self.canvas_height,
self.canvas_width,
self.K,
canvas_color=self.canvas_color,
dtype=self.dtype)
def _losses(self):
# resize images to save memory
rendered_canvas_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.I),
size=(int(self.canvas_height // 2), int(self.canvas_width // 2)))
content_img_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.content_img),
size=(int(self.canvas_height // 2), int(self.canvas_width // 2)))
style_img_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.style_img),
size=(int(self.canvas_height // 2), int(self.canvas_width // 2)))
self.loss_dict = {}
self.loss_dict['content'] = ops.content_loss(self.vgg.extract_features(rendered_canvas_resized),
self.vgg.extract_features(content_img_resized),
#layers=['conv1_2', 'conv2_2', 'conv3_2', 'conv4_2', 'conv5_2'],
layers=['conv4_2', 'conv5_2'],
weights=[1, 1],
scale_by_y=True)
self.loss_dict['content'] *= self.content_weight
self.loss_dict['style'] = ops.style_loss(self.vgg.extract_features(rendered_canvas_resized),
self.vgg.extract_features(style_img_resized),
layers=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'],
weights=[1, 1, 1, 1, 1])
self.loss_dict['style'] *= self.style_weight
self.loss_dict['curviture'] = ops.curviture_loss(self.curve_s, self.curve_e, self.curve_c)
self.loss_dict['curviture'] *= self.curviture_weight
self.loss_dict['tv'] = ops.total_variation_loss(x_loc=self.location, s=self.curve_s, e=self.curve_e, K=10)
self.loss_dict['tv'] *= self.tv_weight
if hasattr(self, 'draw_curve_position') and hasattr(self, 'draw_curve_vector'):
self.loss_dict['drawing'] = ops.draw_projection_loss(self.location,
self.curve_s,
self.curve_e,
self.draw_curve_position,
self.draw_curve_vector,
self.draw_strength)
self.loss_dict['drawing'] *= self.draw_weight
def _optimizer(self):
loss = tf.constant(0.0)
for key in self.loss_dict:
loss += self.loss_dict[key]
step_ops = []
optim_step = tf.train.AdamOptimizer(0.1).minimize(
loss=loss,
var_list=[self.location, self.curve_s, self.curve_e, self.curve_c, self.width])
step_ops.append(optim_step)
optim_step_color = tf.train.AdamOptimizer(0.01).minimize(
loss=self.loss_dict['style'],
var_list=self.color)
step_ops.append(optim_step_color)
# constraint parameters to certain range
with tf.control_dependencies(step_ops.copy()):
step_ops.append(tf.assign(self.color, tf.clip_by_value(self.color, 0, 1)))
coord_x, coord_y = tf.gather(self.location, axis=-1, indices=[0]), tf.gather(self.location, axis=-1, indices=[1])
coord_clip = tf.concat([tf.clip_by_value(coord_x, 0, self.canvas_height), tf.clip_by_value(coord_y, 0, self.canvas_width)], axis=-1)
step_ops.append(tf.assign(self.location, coord_clip))
step_ops.append(tf.assign(self.width, tf.nn.relu(self.width)))
self.optim_step_with_constraints = tf.group(*step_ops)
class PixelOptimizer:
def __init__(self,
canvas, # Canvas (PIL.Image).
style_img, # Style image (PIL.Image).
resolution = 1024, # Resolution of the canvas.
num_steps = 2000, # Number of optimization steps.
content_weight = 1.0, # Weight for the content loss.
style_weight = 10000.0, # Weight for the style loss.
tv_weight = 0.0, # Weight for the total variation loss.
streamlit_pbar = None, # Progressbar for streamlit app (obj).
dtype = 'float32' # Data type.
):
self.resolution = resolution
self.num_steps = num_steps
self.content_weight = content_weight
self.style_weight = style_weight
self.tv_weight = tv_weight
self.streamlit_pbar = streamlit_pbar
self.dtype = dtype
# Set canvas size (set smaller side of content image to 'resolution' and scale other side accordingly)
W, H = canvas.size
if H < W:
new_H = resolution
new_W = int((W / H) * new_H)
else:
new_W = resolution
new_H = int((H / W) * new_W)
self.canvas_height = new_H
self.canvas_width = new_W
canvas = canvas.resize((self.canvas_width, self.canvas_height))
style_img = style_img.resize((self.canvas_width, self.canvas_height))
canvas = np.array(canvas).astype(self.dtype)
style_img = np.array(style_img).astype(self.dtype)
canvas /= 255.0
style_img /= 255.0
self.canvas_np = canvas
self.content_img_np = canvas
self.style_img_np = style_img
ckpt_path = utils.download_weights(url='https://www.dropbox.com/s/hv7b4eajrj7isyq/vgg_weights.pickle?dl=1',
name='vgg_weights.pickle')
self.vgg = networks.VGG(ckpt_path=ckpt_path)
def optimize(self):
self._initialize()
self._losses()
self._optimizer()
with tf.Session() as sess:
sess.run(tf.global_variables_initializer())
steps = trange(self.num_steps, desc='', leave=True)
for step in steps:
canvas_, loss_dict_, _ = \
sess.run(fetches=[self.canvas,
self.loss_dict,
self.optim_step_with_constraints],
options=config_pb2.RunOptions(report_tensor_allocations_upon_oom=True)
)
s = ''
for key in loss_dict_:
loss = loss_dict_[key]
s += key + f': {loss_dict_[key]:.6f}, '
steps.set_description(s[:-2])
steps.refresh()
if self.streamlit_pbar is not None: self.streamlit_pbar.update(1)
return Image.fromarray(np.array(np.clip(canvas_, 0, 1) * 255, dtype=np.uint8))
def _initialize(self):
self.canvas = tf.Variable(name='canvas', initial_value=self.canvas_np, dtype=self.dtype)
self.content_img = tf.constant(name='content_img', value=self.content_img_np, dtype=self.dtype)
self.style_img = tf.constant(name='style_img', value=self.style_img_np, dtype=self.dtype)
def _losses(self):
# resize images to save memory
rendered_canvas_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.canvas),
size=(int(self.canvas_height), int(self.canvas_width)))
content_img_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.content_img),
size=(int(self.canvas_height), int(self.canvas_width)))
style_img_resized = \
tf.image.resize_nearest_neighbor(images=ops.preprocess_img(self.style_img),
size=(int(self.canvas_height), int(self.canvas_width)))
self.loss_dict = {}
self.loss_dict['content'] = ops.content_loss(self.vgg.extract_features(rendered_canvas_resized),
self.vgg.extract_features(content_img_resized),
layers=['conv1_2_pool', 'conv2_2_pool', 'conv3_3_pool', 'conv4_3_pool', 'conv5_3_pool'],
weights=[1, 1, 1, 1, 1])
self.loss_dict['content'] *= self.content_weight
self.loss_dict['style'] = ops.style_loss(self.vgg.extract_features(rendered_canvas_resized),
self.vgg.extract_features(style_img_resized),
layers=['conv1_1', 'conv2_1', 'conv3_1', 'conv4_1', 'conv5_1'],
weights=[1, 1, 1, 1, 1])
self.loss_dict['style'] *= self.style_weight
self.loss_dict['tv'] = ((tf.nn.l2_loss(self.canvas[1:, :, :] - self.canvas[:-1, :, :]) / self.canvas.shape.as_list()[0]) +
(tf.nn.l2_loss(self.canvas[:, 1:, :] - self.canvas[:, :-1, :]) / self.canvas.shape.as_list()[1]))
self.loss_dict['tv'] *= self.tv_weight
def _optimizer(self):
loss = tf.constant(0.0)
for key in self.loss_dict:
loss += self.loss_dict[key]
step_ops = []
optim_step = tf.train.AdamOptimizer(0.01).minimize(loss=loss, var_list=self.canvas)
step_ops.append(optim_step)
# constraint parameters to certain range
with tf.control_dependencies(step_ops.copy()):
step_ops.append(tf.assign(self.canvas, tf.clip_by_value(self.canvas, 0, 1)))
self.optim_step_with_constraints = tf.group(*step_ops)