-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathapp.py
260 lines (212 loc) · 10.2 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import numpy as np
from PIL import Image
from typing import Sequence
import streamlit as st
from streamlit_drawable_canvas import st_canvas
from stqdm import stqdm
import os
import base64
from model import BrushstrokeOptimizer, PixelOptimizer
def parse_paths(json_obj, height, width):
xs = []
ys = []
for segments in json_obj['path']:
if segments[0] == 'Q':
xs.append(segments[2] / width)
xs.append(segments[4] / width)
ys.append(segments[1] / height)
ys.append(segments[3] / height)
xs = np.array(xs)
ys = np.array(ys)
return np.stack((xs, ys), axis=1)
def sample_vectors(points, lookahead=10, freq=10):
if points.shape[0] > 30:
idcs = np.arange(points.shape[0])[::freq]
idcs = np.arange(points.shape[0])
vectors = []
positions = []
lookahead = min(lookahead, idcs.shape[0] - 1)
for i in range(idcs.shape[0] - lookahead):
vectors.append(points[idcs[i] + lookahead] - points[idcs[i]])
positions.append(points[idcs[i]])
return np.array(vectors), np.array(positions)
def get_binary_file_downloader_html(bin_file, file_label='File'):
# Taken from: https://discuss.streamlit.io/t/how-to-download-file-in-streamlit/1806/27
with open(bin_file, 'rb') as f:
data = f.read()
bin_str = base64.b64encode(data).decode()
href = f'<a href="data:application/octet-stream;base64,{bin_str}" download="{os.path.basename(bin_file)}">Download {file_label}</a>'
return href
def resize(img, size, interpolation=Image.BILINEAR):
# https://github.com/pytorch/vision/blob/master/torchvision/transforms/functional.py
if isinstance(size, int) or len(size) == 1:
if isinstance(size, Sequence):
size = size[0]
w, h = img.size
if (w <= h and w == size) or (h <= w and h == size):
return img
if w < h:
ow = size
oh = int(size * h / w)
return img.resize((ow, oh), interpolation)
else:
oh = size
ow = int(size * w / h)
return img.resize((ow, oh), interpolation)
else:
return img.resize(size[::-1], interpolation)
st.sidebar.markdown("""
<style>
.big-font {
font-size:20px !important;
}
.medium-font {
font-size:15px !important;
}
.small-font {
font-size:10px !important;
}
</style>
""", unsafe_allow_html=True)
# Sidebar
## Content and Style image
st.sidebar.markdown('<p class="medium-font"><b>Content Image</b></p>', unsafe_allow_html=True)
selected_content_image = st.sidebar.selectbox('Select content image:', [None] + os.listdir('images/content'))
st.sidebar.text('OR')
uploaded_content_image = st.sidebar.file_uploader('Upload content image:', type=['png', 'jpg'])
st.sidebar.markdown('<p class="medium-font"><b>Style Image</b></p>', unsafe_allow_html=True)
selected_style_image = st.sidebar.selectbox('Select style image:', [None] + os.listdir('images/style'))
st.sidebar.text('OR')
uploaded_style_image = st.sidebar.file_uploader('Upload style image:', type=['png', 'jpg'])
## Parameters
st.sidebar.markdown('<p class="medium-font"><b>Options</b></p>', unsafe_allow_html=True)
num_steps_stroke = st.sidebar.slider('Brushstroke optimization steps:', 20, 100, 100)
num_steps_pixel = st.sidebar.slider('Pixel optimization steps:', 100, 5000, 2000)
num_strokes = st.sidebar.slider('Number of brushstrokes:', 100, 10000, 5000)
content_weight = st.sidebar.slider('Content weight:', 1.0, 50.0, 1.0)
style_weight = st.sidebar.slider('Style weight:', 1.0, 50.0, 3.0)
draw_weight = st.sidebar.slider('Drawing weight', 50.0, 200.0, 100.0)
draw_strength = st.sidebar.slider('Drawing strength (denoted L in the paper):', 50, 200, 100)
stroke_width = st.sidebar.slider('Stroke width:', 0.01, 2.0, 0.1)
stroke_length = st.sidebar.slider('Stroke length:', 0.1, 2.0, 1.1)
#drawing_mode = st.sidebar.selectbox(
# 'Drawing tool:', ('freedraw', 'line', 'rect', 'circle', 'transform')
#)
realtime_update = st.sidebar.checkbox('Update in realtime', True)
# Main
stroke_color = st.color_picker('Stroke color hex: ', '#ff0000')
content_img = None
if selected_content_image is not None: content_img = Image.open(os.path.join('images/content', selected_content_image))
if uploaded_content_image is not None: content_img = Image.open(uploaded_content_image)
style_img = None
if selected_style_image is not None: style_img = Image.open(os.path.join('images/style', selected_style_image))
if uploaded_style_image is not None: style_img = Image.open(uploaded_style_image)
if content_img is None or style_img is None:
st.image(Image.open('docs/img/left_arrow.png'))
st.image(Image.open('docs/img/down_arrow.png'))
#st.markdown('<p class="medium-font"><b>Select or upload content and style images...</b></p>', unsafe_allow_html=True)
col1, col2 = st.beta_columns(2)
# Preview images
if content_img is not None:
content_thumb = resize(content_img, size=400)
col1.header('Content image')
col1.image(content_img, use_column_width=True)
if style_img is not None:
style_thumb = resize(style_img, size=400)
col2.header('Style image')
col2.image(style_thumb, use_column_width=True)
if content_img is not None and style_img is not None:
if not os.path.exists('.temp'):
os.makedirs('.temp')
content_img_name = content_img.filename
content_img = content_img.convert('RGB')
content_img.save(f'.temp/content_img.jpg')
style_img_name = style_img.filename
style_img = style_img.convert('RGB')
style_img.save(f'.temp/style_img.jpg')
height = content_img.size[1]
width = content_img.size[0]
factor = 1.0
# resize image such that the largest side is 512 because else the canvas drawer messes up
if width > 512 or height > 512:
if width < height:
height = int(512 * (height / width))
width = 512
factor *= height / width
else:
width = int(512 * (width / height))
height = 512
factor *= width / height
st.text('Now draw some curves on the canvas.')
st.text('To draw a curve:')
st.text('- hold down the left mouse button')
st.text('- and move the mouse over the canvas.')
# Create a canvas component
canvas_result = st_canvas(
fill_color='rgba(255, 165, 0, 0.3)', # Fixed fill color with some opacity
stroke_width=3,
stroke_color=stroke_color,
background_color='' if content_img else '#eee',
background_image=content_img,
update_streamlit=realtime_update,
height=height,
width=width,
drawing_mode='freedraw',
#key='canvas',
)
if canvas_result.json_data is not None:
if len(canvas_result.json_data['objects']) > 0:
if st.button('Stylize'):
vectors_all = []
positions_all = []
img_array = np.array(content_img)
for i in range(len(canvas_result.json_data['objects'])):
points = parse_paths(canvas_result.json_data['objects'][i], float(height), float(width))
if points.shape[0] == 0:
continue
vectors, positions = sample_vectors(points, lookahead=5, freq=5)
if vectors.ndim < 2 or positions.ndim < 2:
continue
vectors_all.append(vectors)
positions_all.append(positions)
for i in range(points.shape[0]):
y = int(points[i, 0] * content_img.size[0])
x = int(points[i, 1] * content_img.size[1])
img_array[y-2:y+2, x-2:x+2] = np.array([255, 0, 0])
vectors_all = np.concatenate(vectors_all, axis=0).astype(np.float32)
positions_all = np.concatenate(positions_all, axis=0).astype(np.float32)
np.save('.temp/vectors', vectors_all)
np.save('.temp/positions', positions_all)
content_img = Image.open('.temp/content_img.jpg')
style_img = Image.open('.temp/style_img.jpg')
st.text('Brushstroke optimization...')
pbar = stqdm(range(num_steps_stroke))
stroke_optim = BrushstrokeOptimizer(content_img,
style_img,
draw_curve_position_path='.temp/positions.npy',
draw_curve_vector_path='.temp/vectors.npy',
draw_strength=draw_strength,
resolution=512,
num_strokes=num_strokes,
num_steps=num_steps_stroke,
width_scale=stroke_width,
length_scale=stroke_length,
content_weight=content_weight,
style_weight=style_weight,
draw_weight=draw_weight,
streamlit_pbar=pbar)
canvas = stroke_optim.optimize()
st.text('Pixel optimization...')
pbar = stqdm(range(num_steps_pixel))
pixel_optim = PixelOptimizer(canvas,
style_img,
resolution=1024,
num_steps=num_steps_pixel,
content_weight=1.0,
style_weight=10000.0,
streamlit_pbar=pbar)
canvas = pixel_optim.optimize()
st.text('Stylized image:')
st.image(canvas.resize((width, height)))
canvas.save('.temp/canvas.jpg')
st.markdown(get_binary_file_downloader_html('.temp/canvas.jpg', 'stylized image in high resolution'), unsafe_allow_html=True)