-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsplit_dataset.py
64 lines (57 loc) · 2.05 KB
/
split_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import hashlib
import json
import multiprocessing.queues
import os
import numpy as np
import tqdm
import typer
def worker(queue: multiprocessing.Queue, list_json: list):
while True:
try:
name, vals = queue.get(60)
except:
break
idx = 0
name_id = hashlib.blake2b(name.encode()).hexdigest()[:16]
internal = f'.internal_{name_id}.np'
for i, v in enumerate(sorted(map(int, vals))):
folder_name = str(i)
try:
os.mkdir(folder_name)
except:
pass
try:
os.remove(internal)
except FileNotFoundError:
pass
os.system(f"gsutil -q cp gs://video-us/{name}_{v}_image_embd.np {internal}")
with open(internal, 'rb') as f:
k = np.load(f)
std = k["std"]
mean = k["mean"]
for s, m in zip(std.reshape(-1, *std.shape[2:]), mean.reshape(-1, *mean.shape[2:])):
with open(f"{folder_name}/{name_id}_{idx}_image_embd.np", 'wb') as f:
np.savez(f, std=s, mean=m)
idx += 1
os.system(f"gsutil -m -q mv {folder_name}/{name_id}* 'gs://video-us/1/' &")
list_json.append((name, idx))
def main(procs: int, prefetch: int = 16):
with open("list.json", 'r') as f:
items = json.load(f)
queue = multiprocessing.Queue(prefetch)
mgr = multiprocessing.Manager()
list_json = mgr.list()
workers = [multiprocessing.Process(target=worker, args=[queue, list_json], daemon=True) for _ in range(procs)]
for w in workers:
w.start()
for i in range(prefetch + procs):
queue.put(items[i])
for dat in tqdm.tqdm(items[prefetch + procs:], miniters=0):
queue.put(dat)
for w in tqdm.tqdm(workers, desc="Finishing up"):
w.join()
with open("new_list.json", "w") as f:
json.dump(f, list_json)
os.system("gsutil cp new_list.json gs://video-us/new_list.json")
if __name__ == '__main__':
typer.run(main)