-
Notifications
You must be signed in to change notification settings - Fork 126
/
Copy pathsa_analysis.py
35 lines (32 loc) · 1.32 KB
/
sa_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
# -*- coding: utf-8 -*-
from litNlp.predict import SA_Model_Predict
import matplotlib.pyplot as plt
from setting import *
import numpy as np
import os
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
def topic_sa_analysis():
sa_model = SA_Model_Predict(tokenize_path, sa_model_path_m, max_len=100)
if not os.path.exists(topic_emotion_pic):
os.mkdir(topic_emotion_pic)
print(topic_emotion_pic+'文件夹已经建立,请查看当前文件路径')
for key_word in topic_words_list.keys():
sa_analysis_(key_word, sa_model)
def sa_analysis_(key_word, sa_model):
print('{} 正在执行...'.format(key_word))
key_txt = open('{}/{}.txt'.format(topic_path, key_word), 'r', encoding='utf-8').readlines()
sentiments_score_predict = sa_model.predict(key_txt)
# 情感极性输出
sentiments_score_list = [i[1] for i in sentiments_score_predict]
plt.hist(sentiments_score_list, bins=np.arange(0, 1, 0.01))
plt.xlabel("情感值")
plt.ylabel("评论数目")
plt.title(key_word+'-情感极性分布图')
plt.savefig('{}/{}.png'.format(topic_emotion_pic, key_word))
plt.show()
plt.close()
print('{} 情感极性图完成'.format(key_word))
# if __name__ == '__main__':
# # 添加多线程提升预测速度
# topic_sa_analysis()