-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathdemo.py
99 lines (87 loc) · 3.41 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import streamlit as st
from datasets import load_dataset
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer
from time import time
import torch
@st.cache(
allow_output_mutation=True,
hash_funcs={
AutoTokenizer: lambda x: None,
AutoModelForSeq2SeqLM: lambda x: None,
},
suppress_st_warning=True
)
def load_models():
st_time = time()
tokenizer = AutoTokenizer.from_pretrained("Babelscape/rebel-large")
print("+++++ loading Model", time() - st_time)
model = AutoModelForSeq2SeqLM.from_pretrained("Babelscape/rebel-large")
if torch.cuda.is_available():
_ = model.to("cuda:0") # comment if no GPU available
_ = model.eval()
print("+++++ loaded model", time() - st_time)
dataset = load_dataset('datasets/rebel-short.py', data_files={'train': 'data/rebel/sample.jsonl', 'dev': 'data/rebel/sample.jsonl', 'test': 'data/rebel/sample.jsonl', 'relations': "data/relations_count.tsv"}, split="validation")
return (tokenizer, model, dataset)
def extract_triplets(text):
triplets = []
relation = ''
for token in text.split():
if token == "<triplet>":
current = 't'
if relation != '':
triplets.append((subject, relation, object_))
relation = ''
subject = ''
elif token == "<subj>":
current = 's'
if relation != '':
triplets.append((subject, relation, object_))
object_ = ''
elif token == "<obj>":
current = 'o'
relation = ''
else:
if current == 't':
subject += ' ' + token
elif current == 's':
object_ += ' ' + token
elif current == 'o':
relation += ' ' + token
triplets.append((subject, relation, object_))
return triplets
tokenizer, model, dataset = load_models()
agree = st.checkbox('Free input', False)
if agree:
text = st.text_input('Input text', 'Punta Cana is a resort town in the municipality of Higüey, in La Altagracia Province, the easternmost province of the Dominican Republic.')
print(text)
else:
dataset_example = st.slider('dataset id', 0, 1000, 0)
text = dataset[dataset_example]['context']
length_penalty = st.slider('length_penalty', 0, 10, 0)
num_beams = st.slider('num_beams', 1, 20, 3)
num_return_sequences = st.slider('num_return_sequences', 1, num_beams, 2)
gen_kwargs = {
"max_length": 256,
"length_penalty": length_penalty,
"num_beams": num_beams,
"num_return_sequences": num_return_sequences,
}
model_inputs = tokenizer(text, max_length=256, padding=True, truncation=True, return_tensors = 'pt')
generated_tokens = model.generate(
model_inputs["input_ids"].to(model.device),
attention_mask=model_inputs["attention_mask"].to(model.device),
**gen_kwargs,
)
decoded_preds = tokenizer.batch_decode(generated_tokens, skip_special_tokens=False)
st.title('Input text')
st.write(text)
if not agree:
st.title('Silver output')
st.write(dataset[dataset_example]['triplets'])
st.write(extract_triplets(dataset[dataset_example]['triplets']))
st.title('Prediction text')
decoded_preds = [text.replace('<s>', '').replace('</s>', '').replace('<pad>', '') for text in decoded_preds]
st.write(decoded_preds)
for idx, sentence in enumerate(decoded_preds):
st.title(f'Prediction triplets sentence {idx}')
st.write(extract_triplets(sentence))