-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathProduct of consecutive Fib numbers.js
43 lines (30 loc) · 1.52 KB
/
Product of consecutive Fib numbers.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
/*
Description:
The Fibonacci numbers are the numbers in the following integer sequence (Fn):
0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, ...
such as
F(n) = F(n-1) + F(n-2) with F(0) = 0 and F(1) = 1.
Given a number, say prod (for product), we search two Fibonacci numbers F(n) and F(n+1) verifying
F(n) * F(n+1) = prod.
Your function productFib takes an integer (prod) and returns an array:
[F(n), F(n+1), true] or {F(n), F(n+1), 1} or (F(n), F(n+1), True)
depending on the language if F(n) * F(n+1) = prod.
If you don't find two consecutive F(m) verifying F(m) * F(m+1) = prodyou will return
[F(m), F(m+1), false] or {F(n), F(n+1), 0} or (F(n), F(n+1), False)
F(m) being the smallest one such as F(m) * F(m+1) > prod.
Examples
productFib(714) # should return [21, 34, true],
# since F(8) = 21, F(9) = 34 and 714 = 21 * 34
productFib(800) # should return [34, 55, false],
# since F(8) = 21, F(9) = 34, F(10) = 55 and 21 * 34 < 800 < 34 * 55
Notes: Not useful here but we can tell how to choose the number n up to which to go: we can use the "golden ratio" phi which is (1 + sqrt(5))/2 knowing that F(n) is asymptotic to: phi^n / sqrt(5). That gives a possible upper bound to n.
You can see examples in "Example test".
*/
function productFib(prod){
let fib=[0,1]
for (let i=0;fib[i+1]<prod;i++)
fib.push(fib[i]+fib[i+1])
for (let j=0;j<fib.length;j++){
if (fib[j]*fib[j+1]===prod) return [fib[j],fib[j+1],true]
if (fib[j]*fib[j+1]!==prod&&fib[j]*fib[j+1]>prod) return [fib[j],fib[j+1],false]}
}