-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathtrain.py
110 lines (93 loc) · 3.87 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
Author: Talip Ucar
email: [email protected]
Description: Wrapper function for training routine.
"""
import copy
import time
import mlflow
import yaml
import eval
from src.model import SubTab
from utils.arguments import get_arguments, get_config, print_config_summary
from utils.load_data import Loader
from utils.utils import set_dirs, run_with_profiler, update_config_with_model_dims
def train(config, data_loader, save_weights=True):
"""Utility function for training and saving the model.
Args:
config (dict): Dictionary containing options and arguments.
data_loader (IterableDataset): Pytorch data loader.
save_weights (bool): Saves model if True.
"""
# Instantiate model
model = SubTab(config)
# Start the clock to measure the training time
start = time.process_time()
# Fit the model to the data
model.fit(data_loader)
# Total time spent on training
training_time = time.process_time() - start
# Report the training time
print(f"Training time: {training_time // 60} minutes, {training_time % 60} seconds")
# Save the model for future use
_ = model.save_weights() if save_weights else None
# Save the config file to keep a record of the settings
with open(model._results_path + "/config.yml", 'w') as config_file:
yaml.dump(config, config_file, default_flow_style=False)
print("Done with training...")
# Track results
if config["mlflow"]:
# Log config with mlflow
mlflow.log_artifacts("./config", "config")
# Log model and results with mlflow
mlflow.log_artifacts(model._results_path + "/training/" + config["model_mode"] + "/plots", "training_results")
# log model
# mlflow.pytorch.log_model(model, "models")
def main(config):
"""Main wrapper function for training routine.
Args:
config (dict): Dictionary containing options and arguments.
"""
# Set directories (or create if they don't exist)
set_dirs(config)
# Get data loader for first dataset.
ds_loader = Loader(config, dataset_name=config["dataset"])
# Add the number of features in a dataset as the first dimension of the model
config = update_config_with_model_dims(ds_loader, config)
# Start training and save model weights at the end
train(config, ds_loader, save_weights=True)
if __name__ == "__main__":
# Get parser / command line arguments
args = get_arguments()
# Get configuration file
config = get_config(args)
# Overwrite the parent folder name for saving results
config["framework"] = config["dataset"]
# Get a copy of autoencoder dimensions
dims = copy.deepcopy(config["dims"])
# Summarize config and arguments on the screen as a sanity check
print_config_summary(config, args)
#----- If True, start of MLFlow for experiment tracking:
if config["mlflow"]:
# Experiment name
experiment_name = "Give_Your_Experiment_A_Name"
# Set the experiment
mlflow.set_experiment(experiment_name=experiment_name + "_" + str(args.experiment))
# Start a new mlflow run
with mlflow.start_run():
# Run the main with or without profiler
run_with_profiler(main, config) if config["profile"] else main(config)
else:
#----- Run Training - with or without profiler
run_with_profiler(main, config) if config["profile"] else main(config)
#----- Moving to evaluation stage
# Reset the autoencoder dimension since it was changed in train.py
config["dims"] = dims
# Disable adding noise since we are in evaluation mode
config["add_noise"] = False
# Turn off valiation
config["validate"] = False
# Get all of available training set for evaluation (i.e. no need for validation set)
config["training_data_ratio"] = 1.0
# Run Evaluation
eval.main(config)