-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_regressors.py
290 lines (246 loc) · 13.9 KB
/
train_regressors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from sklearn.linear_model import ElasticNet, Lasso, BayesianRidge, LassoLarsIC
from sklearn.ensemble import GradientBoostingRegressor, RandomForestRegressor
from sklearn.kernel_ridge import KernelRidge
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import RobustScaler
from sklearn.base import BaseEstimator, TransformerMixin, RegressorMixin, clone
from sklearn.model_selection import KFold, cross_val_score, train_test_split
from sklearn.metrics import mean_squared_error, mean_absolute_error
from mlxtend.regressor import StackingCVRegressor
import lightgbm as lgb
import xgboost as xgb
import numpy as np
import pandas as pd
import os
import rasterio
import tqdm
import joblib
import pickle
import torch
import torch.nn as nn
from train_nn import MLP
# ---------- Load NN ----------
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = MLP()
net.to(device)
net.load_state_dict(torch.load('./save/DL_no_feature_select.params'))
loss_function = nn.MSELoss(reduction='mean')
loss_function.to(device)
net.eval()
def load_data(path):
df = pd.read_csv(path)
data_sets = pd.DataFrame(df, dtype=np.float32)
feature_data = data_sets.drop(['FSC'], axis=1)
# feature_data.drop(columns=['SensorZenith',
# 'SolarZenith', 'Slope', 'Aspect', 'A2T'], inplace=True)
label_data = data_sets['FSC']
return feature_data, label_data
train_feature, train_label = load_data('./Data/train_data.csv')
test_feature, test_label = load_data('./Data/valid_data.csv')
# ---------- Train ----------
# 特征优选前
lgb_reg = lgb.LGBMRegressor(objective='regression', num_leaves=15,
learning_rate=0.1, n_estimators=800,
max_bin=55, bagging_fraction=0.8,
bagging_freq=5, feature_fraction=0.713,
feature_fraction_seed=9, bagging_seed=9,
min_data_in_leaf=6, min_sum_hessian_in_leaf=11) # 0.0167
xgb_reg = xgb.XGBRegressor(colsample_bytree=0.4603, gamma=0.0468,
learning_rate=0.13, max_depth=5,
min_child_weight=2.7817, n_estimators=800,
reg_alpha=0.9640, reg_lambda=0.9571,
subsample=0.5213, random_state=7, nthread=-1) # 0.0170
GBoost = GradientBoostingRegressor(n_estimators=2000, learning_rate=0.1,
max_depth=4, max_features='sqrt',
min_samples_leaf=15, min_samples_split=10,
loss='huber', random_state=5) # 0.0172
rf_reg = RandomForestRegressor(n_estimators=500, max_features=5, min_samples_leaf=5,
oob_score=True, random_state=0, verbose=0, n_jobs=-1) # 0.0166
stack_gen = StackingCVRegressor(regressors=(lgb_reg, xgb_reg, rf_reg),
meta_regressor=lgb_reg,
use_features_in_secondary=True) # 0.0165
# 特征优选后
# lgb_reg = lgb.LGBMRegressor(objective='regression', num_leaves=14,
# learning_rate=0.1, n_estimators=600,
# max_bin=55, bagging_fraction=0.8,
# bagging_freq=5, feature_fraction=0.763,
# feature_fraction_seed=9, bagging_seed=9,
# min_data_in_leaf=6, min_sum_hessian_in_leaf=10) # 0.0183
# lgb_reg.fit(train_feature, train_label)
# label_pred = lgb_reg.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nLGBMRegressor Pred MSE: {:.4f}\n".format(MSE_ts)) # LGBMRegressor Pred MSE: 0.0119
# print("\nLGBMRegressor Pred RMSE: {:.4f}\n".format(RMSE_ts)) # LGBMRegressor Pred RMSE: 0.1089
# print("\nLGBMRegressor Pred MAE: {:.4f}\n".format(MAE_ts)) # LGBMRegressor Pred MAE: 0.0597
# joblib.dump(lgb_reg, "./model/LGBMRegressor.pkl")
# xgb_reg.fit(train_feature, train_label)
# label_pred = xgb_reg.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nXGBRegressor Pred MSE: {:.4f}\n".format(MSE_ts)) # XGBRegressor Pred MSE: 0.0115
# print("\nXGBRegressor Pred RMSE: {:.4f}\n".format(RMSE_ts)) # XGBRegressor Pred RMSE: 0.1071
# print("\nXGBRegressor Pred MAE: {:.4f}\n".format(MAE_ts)) # XGBRegressor Pred MAE: 0.0596
# joblib.dump(xgb_reg, "./model/XGBRegressor.pkl")
# GBoost.fit(train_feature, train_label)
# label_pred = GBoost.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# print("\GradientBoostingRegressor Pred MSE: {:.4f}\n".format(MSE_ts))
# rf_reg.fit(train_feature, train_label)
# label_pred = rf_reg.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nRandomForestRegressor Pred MSE: {:.4f}\n".format(MSE_ts)) # RandomForestRegressor Pred MSE: 0.0106
# print("\nRandomForestRegressor Pred RMSE: {:.4f}\n".format(RMSE_ts)) # RandomForestRegressor Pred RMSE: 0.1028
# print("\nRandomForestRegressor Pred MAE: {:.4f}\n".format(MAE_ts)) # RandomForestRegressor Pred MAE: 0.0533
# joblib.dump(rf_reg, "./model/RandomForestRegressor.pkl")
# stack_gen.fit(train_feature, train_label) # StackingCVRegressor: MSE 0.0166, RMSE 0.1288, MAE 0.0755 (测试集结果)
# label_pred = stack_gen.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nStackingCVRegressor Pred MSE: {:.4f}\n".format(MSE_ts)) # StackingCVRegressor Pred MSE: 0.0093
# print("\nStackingCVRegressor Pred RMSE: {:.4f}\n".format(RMSE_ts)) # StackingCVRegressor Pred RMSE: 0.0963
# print("\nStackingCVRegressor Pred MAE: {:.4f}\n".format(MAE_ts)) # StackingCVRegressor Pred MAE: 0.0485
# with open('./model/StackingCV.pickle', 'wb') as f:
# pickle.dump(stack_gen, f) # 出错:MemoryError
# joblib.dump(stack_gen, "./model/StackingCV.pkl")
# ---------- Test ----------
lgb_reg = joblib.load("./model/LGBMRegressor.pkl") # LGBMRegressor: MSE 0.0168, RMSE 0.1296, MAE 0.0783
xgb_reg = joblib.load("./model/XGBRegressor.pkl") # XGBRegressor: MSE 0.0172, RMSE 0.1311, MAE 0.0816
rf_reg = joblib.load("./model/RandomForestRegressor.pkl") # RandomForestRegressor: MSE 0.0166, RMSE 0.1288, MAE 0.0766
# stack_gen = joblib.load("./model/StackingCV.pkl")
# with open('./model/StackingCV.pickle', 'rb') as f:
# stack_gen = pickle.load(f)
# label_pred = stack_gen.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nStackingCVRegressor Pred MSE: {:.4f}\n".format(MSE_ts)) # StackingCVRegressor Pred MSE: 0.0166
# print("\nStackingCVRegressor Pred RMSE: {:.4f}\n".format(RMSE_ts)) # StackingCVRegressor Pred RMSE: 0.1288
# print("\nStackingCVRegressor Pred MAE: {:.4f}\n".format(MAE_ts)) # StackingCVRegressor Pred MAE: 0.0755
def blend_models_predict(test_feature=None, test_label=None, have_best=False): # BlendModels: MSE 0.0159, RMSE 0.1262, MAE 0.0744 (测试集结果) 权重: 2 1 3 4
with torch.no_grad():
test_tensor = torch.tensor(np.array(test_feature), dtype=torch.float32).to(device)
nn_hat = net(test_tensor)
nn_hat = nn_hat.reshape(-1).cpu().numpy()
lgb_hat = lgb_reg.predict(test_feature)
xgb_hat = xgb_reg.predict(test_feature)
rf_hat = rf_reg.predict(test_feature)
# print(type(nn_hat), nn_hat.shape)
# print(type(lgb_hat), lgb_hat.shape)
if have_best:
# return (0.2 * lgb_reg.predict(test_feature) + 0.1 * xgb_reg.predict(test_feature)
# + 0.3 * rf_reg.predict(test_feature) + 0.4 * nn_hat)
return (0.4 * lgb_reg.predict(test_feature) + 0.3 * xgb_reg.predict(test_feature)
+ 0.3 * rf_reg.predict(test_feature))
else:
best_mse = 1.0
best_params = [i for i in range(4)]
for a in range(1, 8):
for b in range(1, 9 - a):
for c in range(1, 10 - a - b):
d = 10 - a - b - c
ta, tb, tc, td = a / 10, b / 10, c / 10, d / 10
pred = ta * lgb_hat + tb * xgb_hat + tc * rf_hat + td * nn_hat
pred_mse = mean_squared_error(test_label, pred)
if pred_mse < best_mse:
best_mse = pred_mse
best_params[:] = ta, tb, tc, td
print(f'The best weights of blendmodels is: {best_params[0]}, {best_params[1]}, '
f'{best_params[2]}, {best_params[3]}') # 0.2, 0.1, 0.3, 0.4
print(f'The best MSE is: {best_mse:.4f}') # 0.0159
return (best_params[0] * lgb_hat + best_params[1] * xgb_hat + best_params[2] * rf_hat + best_params[3] * nn_hat)
# label_pred = blend_models_predict(test_feature, test_label)
# MSE_ts = mean_squared_error(test_label, label_pred)
# RMSE_ts = np.sqrt(MSE_ts)
# MAE_ts = mean_absolute_error(test_label, label_pred)
# print("\nBlendModels Pred MSE: {:.4f}\n".format(MSE_ts)) # BlendModels Pred MSE: 0.0093
# print("\nBlendModels Pred RMSE: {:.4f}\n".format(RMSE_ts)) # BlendModels Pred RMSE: 0.0963
# print("\nBlendModels Pred MAE: {:.4f}\n".format(MAE_ts)) # BlendModels Pred MAE: 0.0485
class StackingAveragedModels(BaseEstimator, RegressorMixin, TransformerMixin):
def __init__(self, base_models, meta_model):
self.base_models = base_models
self.meta_model = meta_model
# We again fit the data on clones of the original models
def fit(self, X, y):
self.base_models_ = [clone(x) for x in self.base_models]
self.meta_model_ = clone(self.meta_model)
# Train cloned base models then create out-of-fold predictions
# that are needed to train the cloned meta-model
out_of_fold_predictions = np.zeros((X.shape[0], len(self.base_models_)))
for i, model in enumerate(self.base_models_):
model.fit(X, y)
y_pred = model.predict(X)
out_of_fold_predictions[:, i] = y_pred
# Now train the cloned meta-model using the out-of-fold predictions as new feature
self.meta_model_.fit(out_of_fold_predictions, y)
return self
# Do the predictions of all base models on the test data and use the averaged predictions as
# meta-features for the final prediction which is done by the meta-model
def predict(self, X):
meta_features = np.column_stack([model.predict(X) for model in self.base_models_])
return self.meta_model_.predict(meta_features)
# averaged_models = StackingAveragedModels(base_models=(model_lgb, model_xgb, rf_reg), meta_model=lasso)
# averaged_models.fit(train_feature, train_label)
# label_pred = averaged_models.predict(test_feature)
# MSE_ts = mean_squared_error(test_label, label_pred)
# print("\nAveraged base models MSE: {:.4f}\n".format(MSE_ts)) # Averaged base models MSE: 0.0175
def read_val_image(img_path):
img_data = rasterio.open(img_path).read()
band_num, height_num, width_num = np.shape(img_data)
img_data_list, row_col = [], []
for i in tqdm.trange(height_num):
for j in range(width_num):
temp = img_data[::, i, j]
if np.array(np.isnan(temp), dtype=np.int8).sum() > 0:
continue
else:
img_data_list.append(temp.tolist())
row_col.append([i, j])
img_arr = np.array(img_data_list)
labels = img_arr[:, 0]
feature_data = img_arr[:, 1:]
# feature_name = ['SR1', 'SR2', 'SR3', 'SR4', 'SR5', 'SR6', 'SR7', 'NDVI', 'NDSI', 'NDFSI',
# 'SensorZenith', 'SensorAzimuth', 'SolarZenith', 'SolarAzimuth',
# 'Dem', 'Slope', 'Aspect', 'LST', 'A2T', 'SC', 'LCT']
# feature_data = pd.DataFrame(feature_data, columns=feature_name)
# feature_data.drop(columns=['NDVI', 'NDSI', 'NDFSI', 'SC'], inplace=True)
rows_cols = np.array(row_col)
print(os.path.basename(img_path), 'Val读取成功!')
return feature_data, labels, rows_cols
def predict(model=None, save_path='./result/Blend.xlsx'):
val_path = './IMGValidation'
out_path = './IMGPred'
predictions = []
val_path_list = os.listdir(val_path)
for i in range(0, len(val_path_list)):
img_path = os.path.join(val_path, val_path_list[i])
# out_name = val_path_list[i].split('.')[0] + "_pred.tif"
# path = os.path.join(out_path, out_name)
# print(out_name)
val_data, val_label, rcs = read_val_image(img_path)
if model is not None:
label_hat = model.predict(val_data)
else: # model=None默认使用BlendModels预测
# val_data_tensor = torch.tensor(np.array(val_data), dtype=torch.float32).to(device)
# label_hat = net(val_data_tensor).reshape(-1).cpu().detach().numpy()
label_hat = blend_models_predict(test_feature=val_data, have_best=True)
v, p = pd.Series(val_label), pd.Series(label_hat)
R_val = v.corr(p)
MSE_val = mean_squared_error(val_label, label_hat)
RMSE_val = MSE_val**0.5
MAE_val = mean_absolute_error(val_label, label_hat)
# export_pred_img(vl_path=vdp, rows_cols=rcs, val_pred=label_hat, out=out_name)
res = [val_label.sum(), label_hat.sum(), R_val, MSE_val, RMSE_val, MAE_val]
predictions.append(res)
f1 = np.array(predictions)
vdf = pd.DataFrame(f1)
vdf.to_excel(save_path, float_format='%.6f', index=0)
# predict(lgb_reg, './result/LGBM.xlsx')
# predict(xgb_reg, './result/XGB.xlsx')
# predict(rf_reg, './result/RF.xlsx')
predict()