-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinvert_ir.cpp
172 lines (131 loc) · 4.03 KB
/
invert_ir.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
#include <fftw3.h>
#include <cmath>
#include <iostream>
#include "Buffer.h"
#include "types.h"
#include "libs/config_parser.h"
#include "wav.h"
#include "gnuplot_ipp/gnuplot_ipp.h"
#include "filters.h"
#include "extra.h"
#include <string.h> // memcpy
#include <limits.h>
#include "libs/timer.h"
using std::cout;
using std::endl;
#include <complex>
real complex_norm(real re, real im)
{
return sqrt(re*re + im*im);
}
/// @warn Might not behave well for n=odd!
/* READ!!: http://www.fftw.org/doc/The-Halfcomplex_002dformat-DFT.html */
void HC2magnitude(int N, real *hc, real *magnitude)
{
magnitude[0] = hc[0];
for (idx i=1; i < N/2; ++i)
magnitude[i] = complex_norm(hc[i], hc[N-i]); // Not true for odd N!!!
}
/**
Z = Z1*Z2
@param[in] re1 - Re{Z1}
@param[in] im1 - Im{Z1}
@param[in] re2 - Re{Z2}
@param[in] im2 - Im{Z2}
@param[out] re - Re{Z}
@param[out] im - Im{Z}
*/
inline void complex_multiply(real re1, real im1, real re2, real im2, real *re, real *im)
{
*re = re1*re2 - im1*im2;
*im = re1*im2 + im1*re2;
}
/**
HalfComplex representation multiply
@param[in] z1 - Input HC array
@param[in] z2 - Input HC array
@param[out] z - Output HC array
@param[in] size - Size of the HC array
@warn: ONLY FOR EVEN TRANSFORMATIONS!!!
*/
void hc_multiply (real *z1, real *z2, real *z, idx size)
{
z[0] = z1[0]*z2[0];
idx max_i = size/2;
for (idx i=1; i < max_i; ++i)
complex_multiply(z1[i], z1[size-i],
z2[i], z2[size-i],
&z[i], &z[size-i]);
}
int main(int argc, char **argv)
{
/* Name convention throughout this file:
i - input
o - output
m - magnitude
and capital letters for the frequency domain
*/
Gnuplot pwav, pi, po, pM, pMIH, ph, pih, p;
fftw_plan forward_plan, backwards_plan, h_forward_plan;
real FFT_df;
idx FFT_N;
int FFT_flags;
Guarantee(argc >= 3, "Missing program options:\n \tinvert_ir <impulse_response_wav> <output_inverse_impulse_response_wav> [wait]");
SndfileHandle input_h(argv[1]);
Guarantee(wav::ok(input_h), "Impulse response not found.");
Guarantee(wav::mono(input_h), "The impulse response must be mono.");
uint sample_rate_Hz = input_h.samplerate();
real T_sampling = 1/(real)sample_rate_Hz;
// idx h_size = input_h.frames() * 2 - 1;
idx h_size = input_h.frames();
h_size += h_size % 2; // Implemented only for even FFT_N sizes (HC representation indexing simplicity)
Buffer<real> h(h_size, 0, fftw_malloc, fftw_free), ih(h), H(h), IH(h), M(h), MIH(h);
input_h.read(h(), input_h.frames());
/// FFT
FFT_N = h_size;
FFT_df = sample_rate_Hz / (real) FFT_N;
FFT_flags = FFTW_ESTIMATE; // Use wisdom + FFTW_EXHAUSTIVE later!
h_forward_plan = fftw_plan_r2r_1d(FFT_N, h() , H() , FFTW_R2HC, FFT_flags);
backwards_plan = fftw_plan_r2r_1d(FFT_N, IH(), ih(), FFTW_HC2R, FFT_flags);
// Plot x-axis buffers
Buffer<real> f(FFT_N), t(FFT_N);
for (idx i=0; i < FFT_N; ++i)
{
t[i] = i * T_sampling;
f[i] = i * FFT_df;
}
fftw_execute(h_forward_plan);
ph.set_labels("t (s)", "Amplitude");
ph.plot_xy(t(), h(), FFT_N, "h(t)");
pM.set_labels("f (Hz)", "Magnitude");
pM.cmd("set logscale y");
HC2magnitude(FFT_N, H(), M());
// pM.plot_xy(&f[1], &M[1], FFT_N/2, "|H(f)| AC");
pM.plot_xy(f(), M(), FFT_N/2, "|H(f)|");
// Calculate H^{-1}
IH[0] = 1/H[0];
for (size_t i=1; i < FFT_N/2; ++i)
{
// z = (a+bi)/(c+di) , (a+bi) = 1
real c = H[i];
real d = H[FFT_N-i];
IH[i ] = (c+d)/(c*c+d*d);
IH[FFT_N-i] = (c-d)/(c*c+d*d);
}
IH[FFT_N/2] = 1/H[FFT_N/2];
HC2magnitude(FFT_N, IH(), MIH());
pMIH.set_labels("f (Hz)", "Magnitude");
pMIH.cmd("set logscale y");
pMIH.plot_xy(f(), MIH(), h_size/2, "|H^{-1}(f)|");
fftw_execute(backwards_plan);
ih /= (real) FFT_N;
pih.set_labels("t (s)", "Amplitude");
pih.plot_xy(t(), ih(), h_size, "h^{-1}");
wav::write_mono (argv[2], ih(), h_size, sample_rate_Hz);
if (argc > 3)
wait();
fftw_destroy_plan(h_forward_plan);
fftw_destroy_plan(backwards_plan);
puts("\nSuccess!");
return 0;
}