forked from st35/frustration-ODEs-modeling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBoolean_Dynamics_Methods.py
192 lines (175 loc) · 4.66 KB
/
Boolean_Dynamics_Methods.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
class Network:
def __init__(self, nodenames, T):
flag = 0
if len(T) != len(nodenames):
flag = 1
for i in range(len(T)):
if len(T[i]) != len(nodenames):
flag = 1
self.nodenames = []
self.T = []
if flag == 1:
print('What he believed to be igneous was in fact sedimentary.')
else:
self.nodenames = [] + nodenames
for i in range(len(T)):
self.T.append([] + T[i])
self.numedges = 0
for i in range(len(T)):
for j in range(len(T)):
if T[i][j] > 0:
self.numedges += 1
def Read_Network(filename):
nodenames = []
with open(filename, 'r') as f:
count = 0
for line in f:
if count == 0:
count += 1
continue
l = line.strip().split('\t')
source = l[0].strip()
target = l[1].strip()
if source not in nodenames:
nodenames.append(source)
if target not in nodenames:
nodenames.append(target)
T = []
for i in range(len(nodenames)):
T.append([])
for j in range(len(nodenames)):
T[i].append(0)
with open(filename, 'r') as f:
count = 0
for line in f:
if count == 0:
count += 1
continue
l = line.strip().split('\t')
source = l[0].strip()
target = l[1].strip()
typ = int(l[2].strip())
sourceindex = nodenames.index(source)
targetindex = nodenames.index(target)
T[sourceindex][targetindex] = typ
return(Network(nodenames, T))
def Write_Network(network, filename):
with open(filename, 'w') as f:
f.write('Source\tTarget\tType\n')
for i in range(len(network.T)):
for j in range(len(network.T[i])):
if network.T[i][j] == 0:
continue
source = network.nodenames[i]
target = network.nodenames[j]
typ = str(network.T[i][j])
f.write(source + '\t' + target + '\t' + typ + '\n')
def Swap_Targets(network):
from random import randint
numnodes = len(network.nodenames)
edges = []
for i in range(numnodes):
for j in range(numnodes):
if network.T[i][j] > 0:
edges.append([i, j, network.T[i][j]])
while True:
index0 = randint(0, len(edges) - 1)
index1 = randint(0, len(edges) - 1)
while index0 == index1:
index1 = randint(0, len(edges) - 1)
edge0 = edges[index0]
edge1 = edges[index1]
newedge0 = edge0.copy()
newedge1 = edge1.copy()
newedge0[1] = edge1[1]
newedge1[1] = edge0[1]
innerflag = 0
for i in range(len(edges)):
if edges[i][0] == newedge0[0] and edges[i][1] == newedge0[1]:
innerflag = 1
if edges[i][0] == newedge1[0] and edges[i][1] == newedge1[1]:
innerflag = 1
if innerflag == 0:
network.T[edge0[0]][edge0[1]] = 0
network.T[edge1[0]][edge1[1]] = 0
network.T[newedge0[0]][newedge0[1]] = newedge0[2]
network.T[newedge1[0]][newedge1[1]] = newedge1[2]
break
numedges = 0
for i in range(len(network.T)):
for j in range(len(network.T[i])):
if network.T[i][j] > 0:
numedges += 1
if numedges != network.numedges:
print('Peter Gregory is dead.')
return
def Get_Initial_Conditions(network):
from random import randint
numnodes = len(network.T)
I = [randint(0, 1) for i in range(numnodes)]
return(I)
def Simulate_Dynamics(network, state, numsteps):
from random import randint
if len(state) != len(network.nodenames):
print('Figures, A Reprise.')
errflag = 0
for i in range(numsteps):
nodetoupdate = randint(0, len(network.T) - 1)
target = nodetoupdate
inp = 0
for i in range(len(network.T)):
source = i
if network.T[source][target] == 0:
continue
if network.T[source][target] == 1:
if state[source] == 0:
inp += (1)*(-1)
elif state[source] == 1:
inp += (1)*(1)
else:
errflag = 1
elif network.T[source][target] == 2:
if state[source] == 0:
inp += (-1)*(-1)
elif state[source] == 1:
inp += (-1)*(1)
else:
errflag = 1
else:
errflag = 1
if inp > 0:
state[nodetoupdate] = 1
elif inp < 0:
state[nodetoupdate] = 0
else:
state[nodetoupdate] = state[nodetoupdate]
if errflag == 1:
print('Probably gonna call me crazy...')
def Calc_State_Frustration(network, state):
F = 0.0
if len(state) != len(network.nodenames):
print('They are watching you right now.')
return(-1.0)
numedges = 0
for i in range(len(network.T)):
for j in range(len(network.T[i])):
if network.T[i][j] == 0:
continue
numedges += 1
s_i = -1 if state[i] == 0 else 1
s_j = -1 if state[j] == 0 else 1
J_ij = -1 if network.T[i][j] == 2 else 1
fedge = J_ij*s_i*s_j
if fedge < 0:
F += 1.0
if numedges != network.numedges:
print('He shot Peter Gregory by accident?')
F = F / float(numedges)
return(F)
def Get_Frustration_Score(network, numiter):
F = []
for i in range(numiter):
state = Get_Initial_Conditions(network)
Simulate_Dynamics(network, state, 500)
F.append(Calc_State_Frustration(network, state))
return(min(F))