-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsymbcot.py
263 lines (217 loc) · 12.1 KB
/
symbcot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import json
import os
from tqdm import tqdm
from utils import OpenAIModel
import argparse
import re
import sys
class GPT3_Reasoning_Graph_Baseline:
def __init__(self, args):
self.args = args
self.data_path = args.data_path
self.dataset_name = args.dataset_name
self.split = args.split
self.model_name = args.model_name
self.save_path = args.save_path
self.mode = args.mode
self.openai_api = OpenAIModel(args.api_key, args.model_name, args.stop_words, args.max_new_tokens)
def load_in_context_examples_trans(self):
file_path = os.path.join('./prompts', self.dataset_name, 'translation.txt')
with open(file_path) as f:
in_context_examples = f.read()
return in_context_examples
def load_in_context_examples_plan(self):
file_path = os.path.join('./prompts', self.dataset_name, 'plan_generation.txt')
with open(file_path) as f:
in_context_examples = f.read()
return in_context_examples
def load_in_context_examples_solve(self):
file_path = os.path.join('./prompts', self.dataset_name, 'solver.txt')
with open(file_path) as f:
in_context_examples = f.read()
return in_context_examples
def load_raw_dataset(self, split):
with open(os.path.join(self.data_path, self.dataset_name, f'{split}.json')) as f:
raw_dataset = json.load(f)
return raw_dataset
def index_context(self, context):
sentences = re.split(r'(?<!\w\.\w.)(?<![A-Z][a-z]\.)(?<=\.|\?)\s', context)
formatted_context = enumerate(sentences, start=1)
indexed_sentences = '\n'.join([f"{index}: {sentence}" for index, sentence in formatted_context])
return str(indexed_sentences)
def construct_prompt_a(self, record, in_context_examples_trans):
full_prompt = in_context_examples_trans
context = record['context']
question = record['question'].strip()
full_prompt = full_prompt.replace('[[CONTEXT]]', context)
full_prompt = full_prompt.replace('[[QUESTION]]', question)
return full_prompt
def construct_prompt_b(self, record, responses_a, in_context_examples_plan):
full_prompt = in_context_examples_plan
full_prompt = full_prompt.replace('[[CONTEXT]]', responses_a)
return full_prompt
def construct_prompt_c(self, responses_a, responses_b, in_context_examples_solve):
full_prompt = in_context_examples_solve
plan = responses_b
full_prompt = full_prompt.replace('[[CONTEXT]]', responses_a)
full_prompt = full_prompt.replace('[[PLAN]]', plan)
return full_prompt
def post_process_a(self, response_a):
response_a = str(response_a)
context_start = response_a.find('"context":') + 10
context_end = response_a.find('",\n"Question"')
context = response_a[context_start:context_end].strip()
question_start = response_a.find('"Question":') + 11
question_end = response_a[question_start:].find('"}') + question_start
question = response_a[question_start:question_end].strip()
return context, question
def post_process_c(self, response_c):
pattern_bracket = r"Final answer: \{([A-E])\}"
match = re.search(pattern_bracket, response_c)
if match:
answers = match.group(1)
return answers
pattern_direct = r'\{(\w+)\}'
match = re.search(pattern_direct, response_c, re.IGNORECASE)
if match:
return match.group(1).lower()
return "No final answer found in the text."
def final_process(self, final_answer):
final_answer = final_answer.lower()
if final_answer == "true":
final_answer = 'A'
elif final_answer == "false":
final_answer = 'B'
elif final_answer == "unknown":
final_answer = 'C'
else:
final_answer = "No final answer found in the text."
return final_answer
def reasoning_graph_generation(self):
# load raw dataset
raw_dataset = self.load_raw_dataset(self.split)
print(f"Loaded {len(raw_dataset)} examples from {self.split} split.")
# load in-context examples
in_context_examples_trans = self.load_in_context_examples_trans()
in_context_examples_plan = self.load_in_context_examples_plan()
in_context_examples_solve = self.load_in_context_examples_solve()
outputs = []
error_output = []
for example in tqdm(raw_dataset):
question = example['question']
try:
print("Translating...")
prompts_a = self.construct_prompt_a(example, in_context_examples_trans)
responses_a, _ = self.openai_api.generate(prompts_a)
print("Planning...")
prompts_b = self.construct_prompt_b(example, responses_a, in_context_examples_plan)
responses_b, _ = self.openai_api.generate(prompts_b)
print("Solving...")
prompts_c = self.construct_prompt_c(responses_a, responses_b, in_context_examples_solve)
responses_c, finish_reason = self.openai_api.generate(prompts_c)
final_answer = self.post_process_c(responses_c)
final_choice = self.final_process(final_answer)
output = {'id': example['id'],
'question': question,
'answer': example['answer'],
'predicted_answer': final_answer,
'predicted_choice': final_choice,
'context': responses_a,
'plan': responses_b,
'execution': responses_c,
'finish_reason': finish_reason}
print(output)
outputs.append(output)
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}.json'), 'w') as f:
json.dump(outputs, f, indent=2, ensure_ascii=False)
except Exception as e:
print('Error in generating example: ', example['id'])
print(e)
error = {'id': example['id']}
error_output.append(error)
try:
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}_error.json'), 'w') as f:
json.dump(error_output, f, indent=2, ensure_ascii=False)
except:
print("Error in saving error output")
continue
# save outputs
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}.json'), 'w') as f:
json.dump(outputs, f, indent=2, ensure_ascii=False)
def batch_reasoning_graph_generation(self, batch_size=10):
# load raw dataset
raw_dataset = self.load_raw_dataset(self.split)
print(f"Loaded {len(raw_dataset)} examples from {self.split} split.")
# load in-context examples
in_context_examples_trans = self.load_in_context_examples_trans()
in_context_examples_plan = self.load_in_context_examples_plan()
in_context_examples_solve = self.load_in_context_examples_solve()
outputs = []
# split dataset into chunks
dataset_chunks = [raw_dataset[i:i + batch_size] for i in range(0, len(raw_dataset), batch_size)]
for chunk in tqdm(dataset_chunks):
try:
print("Translating...")
batch_translation = self.openai_api.batch_generate([self.construct_prompt_a(example, in_context_examples_trans) for example in chunk])
print("Planning...")
batch_plan = self.openai_api.batch_generate([self.construct_prompt_b(example, responses_a, in_context_examples_plan) for example, responses_a in zip(chunk, batch_translation)])
print("Solving...")
batch_outputs = self.openai_api.batch_generate([self.construct_prompt_c(responses_a, responses_b, in_context_examples_solve) for responses_a, responses_b in zip(batch_translation, batch_plan)])
for sample, translation, plan, output in zip(chunk, batch_translation, batch_plan, batch_outputs):
dict_output = self.update_answer(sample, translation, plan, output)
outputs.append(dict_output)
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}.json'), 'w') as f:
json.dump(outputs, f, indent=2, ensure_ascii=False)
except Exception as e:
print("Error in batch generation: ", e)
for sample in chunk:
try:
print("Translating...")
prompts_a = self.construct_prompt_a(sample, in_context_examples_trans)
responses_a, _ = self.openai_api.generate(prompts_a)
print("Planning...")
prompts_b = self.construct_prompt_b(sample, responses_a, in_context_examples_plan)
responses_b, _ = self.openai_api.generate(prompts_b)
print("Solving...")
prompts_c = self.construct_prompt_c(responses_a, responses_b, in_context_examples_solve)
output, _ = self.openai_api.generate(prompts_c)
dict_output = self.update_answer(sample, responses_a, responses_b, output)
outputs.append(dict_output)
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}.json'), 'w') as f:
json.dump(outputs, f, indent=2, ensure_ascii=False)
except Exception as e:
print('Error in generating example: ', sample['id'] , e)
with open(os.path.join(self.save_path, f'{self.mode}_{self.dataset_name}_{self.split}_{self.model_name}.json'), 'w') as f:
json.dump(outputs, f, indent=2, ensure_ascii=False)
def update_answer(self, sample, translation, plan, output):
final_answer = self.post_process_c(output)
final_choice = self.final_process(final_answer)
dict_output = {'id': sample['id'],
'question': sample['question'],
'original_context': sample['context'],
'context': translation,
'plan': plan,
'execution': output,
'predicted_answer': final_answer,
'answer': sample['answer'],
'predicted_choice': final_choice}
return dict_output
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='./data')
parser.add_argument('--dataset_name', type=str)
parser.add_argument('--split', type=str)
parser.add_argument('--save_path', type=str, default='./results')
parser.add_argument('--demonstration_path', type=str, default='./icl_examples')
parser.add_argument('--api_key', type=str)
parser.add_argument('--model_name', type=str)
parser.add_argument('--stop_words', type=str, default='------')
parser.add_argument('--mode', type=str)
parser.add_argument('--max_new_tokens', type=int)
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
gpt3_problem_reduction = GPT3_Reasoning_Graph_Baseline(args)
# gpt3_problem_reduction.reasoning_graph_generation()
gpt3_problem_reduction.batch_reasoning_graph_generation(batch_size=1)