-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathA2C.py
121 lines (93 loc) · 3.94 KB
/
A2C.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
from keras.layers import Dense, Activation, Input
from keras.models import Model, load_model
from keras.optimizers import Adam,RMSprop
import keras.backend as K
import numpy as np
class Actor():
def __init__(self, ALPHA, n_actions =4,
layer1_size=16,layer2_size=16, input_dims = 8):
self.lr = ALPHA
self.input_dims = input_dims
self.h1_dims = layer1_size
self.h2_dims = layer2_size
self.n_actions = n_actions
self.state_memory = []
self.action_memory = []
self.reward_memory = []
self.actor, self.policy = self.build_polic_network()
self.actions_space = [i for i in range(n_actions)]
def build_polic_network(self):
input = Input(shape=(self.input_dims,))
advantages = Input(shape=[1])
# no hidden layer
if(self.h1_dims == 0 and self.h2_dims==0):
probs = Dense(self.n_actions, activation='softmax')(input)
#One hidden layer
elif(self.h1_dims != 0 and self.h2_dims == 0):
dense1 = Dense(self.h1_dims,activation='relu')(input)
probs = Dense(self.n_actions, activation='softmax')(dense1)
#Two hidden layers
else:
dense1 = Dense(self.h1_dims,activation='relu')(input)
dense2 = Dense(self.h2_dims, activation='relu')(dense1)
probs = Dense(self.n_actions, activation='softmax')(dense2)
#Loss funciton implimenting Cross Entropy
def custum_loss(y_true,y_pred):
#Clipping to ignore getting 0 and 1 has input from softmax layer
out = K.clip(y_pred, 1e-8,1-1e-8)
log_lik = y_true*K.log(out)
return K.sum(-log_lik*advantages)
actor = Model(inputs = [input, advantages], outputs = [probs])
actor.compile(optimizer=Adam(lr=self.lr), loss=custum_loss)
actor.summary()
predict = Model(inputs=[input], outputs=[probs])
predict.compile(optimizer=Adam(lr=self.lr), loss=custum_loss)
return actor, predict
def choose_action(self, observation):
state = observation[np.newaxis, :]
probabilities = self.policy.predict(state)[0]
action = np.random.choice(self.actions_space, p=probabilities)
return action
def save_model(self,name):
self.policy.save(name)
def load_weights(self,name):
self.policy.load_weights(name)
class Critic():
def __init__(self, ALPHA, Gamma = 0.99, n_actions =4,
layer1_size=16,layer2_size=16, input_dims = 8):
self.gamma = Gamma
self.lr = ALPHA
#Estimated reward
self.G = 0
#Total Reward of each episode is scored
self.Total_Reward_for_all_episodes = []
self.input_dims = input_dims
self.h1_dims = layer1_size
self.h2_dims = layer2_size
self.n_actions = n_actions
self.state_memory = []
self.action_memory = []
self.reward_memory = []
self.critic = self.build_polic_network()
def build_polic_network(self):
input = Input(shape=(self.input_dims,))
# no hidden layer
if(self.h1_dims == 0 and self.h2_dims==0):
value = Dense(1, activation='linear')(input)
#One hidden layer
elif(self.h1_dims != 0 and self.h2_dims == 0):
dense1 = Dense(self.h1_dims,activation='relu')(input)
value = Dense(1, activation='linear')(dense1)
#Two hidden layers
else:
dense1 = Dense(self.h1_dims,activation='relu')(input)
dense2 = Dense(self.h2_dims, activation='relu')(dense1)
value = Dense(1, activation='linear')(dense2)
critic = Model(inputs = [input], outputs = [value])
critic.compile(optimizer=Adam(lr=self.lr), loss='mean_squared_error')
critic.summary()
return critic
def save_model(self,name):
self.critic.save(name)
def load_weights(self,name):
self.critic.load_weights(name)