diff --git a/.gitignore b/.gitignore index 557b811..fa78fbc 100644 --- a/.gitignore +++ b/.gitignore @@ -54,6 +54,9 @@ Icon? ehthumbs.db Thumbs.db +setup.cfg +dist/ + # Exclude externalisation results from tikz tikz*.pdf *.md5 diff --git a/bayesnewton/models.py b/bayesnewton/models.py index 7284089..4133057 100644 --- a/bayesnewton/models.py +++ b/bayesnewton/models.py @@ -58,7 +58,7 @@ def __init__(self, kernel, likelihood, X, Y): class SparseVariationalGP(VariationalInference, SparseGaussianProcess): """ - Sparse variational Gaussian process (SVGP) [1], adapted to use conjugate computation VI [2] + Sparse variational Gaussian process (SVGP) [1, 2] :param kernel: a kernel object :param likelihood: a likelihood object :param X: inputs @@ -67,8 +67,7 @@ class SparseVariationalGP(VariationalInference, SparseGaussianProcess): :param opt_z: boolean determining whether to optimise the inducing input locations [1] Hensman, Matthews, Ghahramani: Scalable Variational Gaussian Process Classification, AISTATS 2015 - [2] Khan, Lin: Conugate-Computation Variational Inference - Converting Inference in Non-Conjugate Models in to - Inference in Conjugate Models, AISTATS 2017 + [2] Adam, Chang, Khan, Solin: Dual Parameterization of Sparse Variational Gaussian Processes, NeurIPS 2021 """ def __init__(self, kernel, likelihood, X, Y, Z, opt_z=False): super().__init__(kernel, likelihood, X, Y, Z, opt_z) diff --git a/setup.py b/setup.py index 488d453..8a7d75d 100644 --- a/setup.py +++ b/setup.py @@ -1,6 +1,6 @@ from setuptools import setup, find_packages -__version__ = "0.0.0" +__version__ = "1.1" setup( name='bayesnewton',