Skip to content

Latest commit

 

History

History
162 lines (147 loc) · 6.88 KB

chap-02.md

File metadata and controls

162 lines (147 loc) · 6.88 KB
pagetitle author
2. Functions

2. Functions

1. Let $f : A\to B$. Let $A_0\subset A$ and $B_0\subset B$.
 $\quad$(a) Show that $A_0\subset f^{-1}(f(A_0))$ and that equality holds if $f$ is injective.
 $\quad$(b) Show that $f(f^{-1}(B_0))\subset B_0$ and that equality holds if $f$ is surjective.

Proof. $\quad$(a) $x\in A_0\Rightarrow f(x)\in f(A_0)$ $\Rightarrow$ $x\in f^{-1}(f(A_0))$. But if $a\notin A_0$, $b\in A_0$, and $f(a)=f(b)$, then $a\in f^{-1}(f(A_0))$. If $f$ is injective, then $f(a)=f(b)$ implies $a=b$. $x\in f^{-1}(f(A_0))$ $\Rightarrow$ $f(x)\in f(A_0)$ $\Rightarrow x\in A_0$.
 $\quad$(b) $b\in f(f^{-1}(B_0))\Leftrightarrow b=f(a)$ for at least one $a\in f^{-1}(B_0)$ $\Leftrightarrow$ $b=f(a)$ for at least one $a$ such that $f(a)\in B_0$. $b\notin B_0\Rightarrow$ $b\notin f(f^{-1}(B_0))$. If $f$ is not surjective, then there is $b\in B_0$ such that $f(a)\neq b$ for every $a$. Otherwise, for all $b\in B_0$, $b=f(a)$ for at least one $a$.$\quad\square$

2. Let $f :A\to B$ and let $A_i\subset A$ and $B_i\subset B$ for $i=0$ and $i=1$. Show that $f^{-1}$ preserves inclusions, unions, intersections, and differences of sets:
 $\quad$(a) $B_0\subset B_1\Rightarrow f^{-1}(B_0)\subset f^{-1}(B_1)$.
 $\quad$(b) $f^{-1}(B_0\cup B_1) = f^{-1}(B_0)\cup f^{-1}(B_1)$.
 $\quad$(c) $f^{-1}(B_0\cap B_1) = f^{-1}(B_0)\cap f^{-1}(B_1)$.
 $\quad$(d) $f^{-1}(B_0 - B_1) = f^{-1}(B_0) - f^{-1}(B_1)$.
Show that $f$ preserves inclusions and unions only:
 $\quad$(e) $A_0\subset A_1\Rightarrow f(A_0)\subset f(A_1)$.
 $\quad$(f) $f(A_0\cup A_1)=f(A_0)\cup f(A_1)$.
 $\quad$(g) $f (A_0\cap A_1)\subset f (A_0)\cap f (A_1)$; show that equality holds if $f$ is injective.
 $\quad$(h) $f(A_0-A_1)\supset f (A_0)-f (A_1)$; show that equality holds if $f$ is injective.

Proof. $\quad$(a) $x\in f^{-1}(B_0)\Rightarrow f(x)\in B_0$ $\Rightarrow$ $f(x)\in B_1$ $\Rightarrow$ $x\in f^{-1}(B_1)$.
 $\quad$(b) $x\in f^{-1}(B_0\cup B_1)\Leftrightarrow f(x)\in B_0\cup B_1$ $\Leftrightarrow$ $f(x)\in B_1$ or $f(x)\in B_2$ $\Leftrightarrow$ $x\in f^{-1}(B_0)$ or $x\in f^{-1}(B_0)$ $\Leftrightarrow$ $f^{-1}(B_0)\cup f^{-1}(B_1)$.
 $\quad$(c) $x\in f^{-1}(B_0\cap B_1)\Leftrightarrow f(x)\in B_0\cap B_1$ $\Leftrightarrow$ $f(x)\in B_1$ and $f(x)\in B_2$ $\Leftrightarrow$ $x\in f^{-1}(B_0)$ and $x\in f^{-1}(B_0)$ $\Leftrightarrow$ $f^{-1}(B_0)\cap f^{-1}(B_1)$.
 $\quad$(d) $x\in f^{-1}(B_0-B_1)\Leftrightarrow f(x)\in B_0-B_1$ $\Leftrightarrow$ $f(x)\in B_1$ and $f(x)\notin B_2$ $\Leftrightarrow$ $x\in f^{-1}(B_0)$ and $x\notin f^{-1}(B_0)$ $\Leftrightarrow$ $f^{-1}(B_0)-f^{-1}(B_1)$.
 $\quad$(e) $y\in f(A_0)$ $\Leftrightarrow$ $y=f(x)$ for at least one $x\in A_0$ $\Rightarrow$ $y=f(x)$ for at least one $x\in A_1$.
 $\quad$(f) $y\in f(A_0\cup A_1)$ $\Leftrightarrow$ $y=f(x)$ for at least one $x$ such that $x\in A_0$ or $x\in A_1$ $\Leftrightarrow$ ($y=f(x)$ for at least one $x\in A_0$) or ($y=f(x)$ for at least one $x\in A_1$) $\Leftrightarrow$ $x\in f(A_0)\cup f(A_1)$.
 $\quad$(g) Since $A_0\cap A_1\subset A_0$ and $A_0\cap A_1\subset A_1$, by (e) $f(A_0\cap A_1)\subset f(A_0)$ and $f(A_0\cap A_1)\subset f(A_1)$. Thus $f(A_0\cap A_1)\subset f(A_0)\cap f(A_1)$. If $f$ is injective, then $f(a)=f(b)\Rightarrow a=b$. Thus if $f(x)\in f(A_0)\cap f(A_1)$, then $x\in A_0\cap A_1$, and so $f(x)\in f(A_0\cap A_1)$.
 $\quad$(h) $y\in f(A_0)-f(A_1)\Leftrightarrow y=f(a)$ for at least one $a\in A_0$ and $y\neq f(b)$ for every $b\in A_1$ $\Rightarrow$ $y=f(a)$ for at least one $a\in A-B$ $\Leftrightarrow$ $y\in f(A_0-A_1)$. If $f$ is injective, then similarly to (g), $f(x)\in f(A_0)-f(A_1)$ $\Rightarrow$ $x\in A_0-A_1$ $\Rightarrow$ $f(x)\in f(A_0-A_1)$.$\quad\square$

3. Show that (b), (c), (f), and (g) of Exercise 2 hold for arbitrary unions and intersections.

Similarly to Exercise 9 of "1. Fundamental Concepts".

4. Let $f:A\to B$ and $g:B\to C$.
 $\quad$(a) If $C_0\subset C$, show that $(g\circ f)^{-1}(C_0)= f^{-1}(g^{-1} (C_0))$.
 $\quad$(b) If $f$ and $g$ are injective, show that $g \circ f$ is injective.
 $\quad$(c) If $g \circ f$ is injective, what can you say about injectivity of $f$ and $g$?
 $\quad$(d) If $f$ and $g$ are surjective, show that $g \circ f$ is surjective.
 $\quad$(e) If $g \circ f$ is surjective, what can you say about surjectivity of $f$ and $g$?
 $\quad$(f) Summarize your answers to (b)–(e) in the form of a theorem.

Proof. $\quad$(a) $x\in(g\circ f)^{-1}(C_0)\Leftrightarrow$ $g(f(x))\in C_0\Leftrightarrow$ $f(x) \in g^{-1}(C_0)\Leftrightarrow$ $x\in f^{-1}(g^{-1}(C_0))$.
 $\quad$(b) $g(f(a))\neq g(f(b))\Rightarrow f(a)\neq f(b)$ $\Rightarrow a\neq b$.
 $\quad$(c) $f$ is injective, but $g$ is not necessarily injective.
 $\quad$(d) $(g \circ f)(A)=C$.
 $\quad$(e) $g$ is surjective, but $f$ is not necessarily surjective.
 $\quad$(f) If $g\circ f$ is bijective, then $f$ is injective, and $g$ is surjective.$\quad\square$

5. In general, let us denote the identity function for a set $C$ by $i_C$. That is, define $i_C:C\to C$ to be the function given by the rule $i_C(x)=x$ for all $x\in C$. Given $f: A\to B$, we say that a function $g : B\to A$ is a left inverse for $f$ if $g \circ f = i_A$; and we say that $h : B\to A$ is a right inverse for $f$ if $f \circ h = i_B$.
 $\quad$(a) Show that if $f$ has a left inverse, $f$ is injective; and if $f$ has a right inverse, $f$ is surjective.
 $\quad$(b) Give an example of a function that has a left inverse but no right inverse.
 $\quad$(c) Give an example of a function that has a right inverse but no left inverse.
 $\quad$(d) Can a function have more than one left inverse? More than one right inverse?
 $\quad$(e) Show that if $f$ has both a left inverse $g$ and a right inverse $h$, then $f$ is bijective and $g=h= f^{-1}$.

Proof. $\quad$(a) By Exercise 4 (f), $g\circ f$ is bijective $\Rightarrow$ $f$ is injective; $f\circ g$ is bijective $\Rightarrow$ $f$ is surjective.
 $\quad$(b) $f:{0}\to{0,1}$ given by $x\mapsto x$.
 $\quad$(c) $f:{0,1}\to{0}$ given by $x\mapsto 0$.
 $\quad$(d) Yes.
 $\quad$(e) By Exercise 4 (f), $f$ is bijective. If $h\neq f^{-1}$ or $h\neq f^{-1}$, then $g\circ f\neq i_A$ or $f\circ h\neq i_B$. Thus $g=h= f^{-1}$.$\quad\square$

6. Let $f : \mathbb{R}\to \mathbb{R}$ be the function $f(x) = x^3 - x$. By restricting the domain and range of $f$ appropriately, obtain from $f$ a bijective function $g$. Draw the graphs of $g$ and $g^{-1}$. (There are several possible choices for $g$.)

Solution. $\quad$$g:{a}\to{a^3-a}$ for every $a\in\mathbb{R}$, $g:(1,2)\to(0,6)$, $g:(3,\infty)\to(24,\infty)$, $\ldots$.