-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrainer.py
33 lines (27 loc) · 1.1 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
from torch import nn
import torch
from transformers import Trainer
class TaxonomyTrainer(Trainer):
loss_fct = nn.CrossEntropyLoss(reduce=None)
def compute_loss(self, model, inputs, return_outputs=False):
# print(inputs)
masks = inputs.pop("label_mask")
outputs = model(**inputs)
logits = outputs.logits
logits = logits[:, :-1, :].reshape(-1, logits.shape[-1])
labels = inputs['input_ids'][:, 1:]
labels = labels.reshape(-1)
masks = masks[:, 1:].float()
masks = masks.reshape(-1)
loss = self.loss_fct(logits, labels)
loss = (loss * masks).mean()
return (loss, outputs) if return_outputs else loss
class TaxonomyTrainerBinary(Trainer):
loss_fct = nn.BCEWithLogitsLoss()
def compute_loss(self, model, inputs, return_outputs=False):
# print(inputs)
outputs = model(input_ids=inputs['input_ids'])
logits = outputs.logits.squeeze()
labels = inputs['labels'].float()
loss = self.loss_fct(logits, labels)
return (loss, outputs) if return_outputs else loss